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Abstract

Graph is a type of mathematical model to study the relationships among entities. The theory

on graphs is called Graph Theory. It started in 1736 and has 283 years of history since the

paper was written by Leonhard Euler on the Seven Bridges of Königsberg.

In computer science, the term "Interconnection Networks" has been used to refer to a

set of interconnected elements. For example, a computer network where computers was

connected by wires or Internet of Things (IoT) is connected via wireless connection. There

are two types of network: static and dynamic.

Static networks are hard-wired and their configurations do not change. The structure,

which is also called topology signifies that the nodes are arranged in specific shape and the

shape is maintained throughout the networks. In this thesis, we focus on the static networks.

In graph theory, graphs are used to model the topology of network, whether it is networks

of communication, data organization, computational devices, the flow of computation. For

instance, the link structure of a local area network can be represented by an undirected

graph, in which the vertices represent computers and edges represent connections between

two computers. A similar approach can be applied to problems in social media, travel,

biology, computer design, mapping the progression of neuro-degenerative diseases, and

many other fields. Graph models could be directed, undirected and weighted, depending on

the properties of the network we are studying. Fault-tolerance of networks is an important

property. Fault-tolerance is the property that enables a system to continue operating properly

in the event of the failure of some (one or more faults) of its components. Fault-tolerance is

particularly sought after in high-availability or life-critical systems.



x

We are interested in the fault-tolerance of networks. Considering the corresponding

graph model of the networks, connectivity of the graphs measures how resistant a graph

can be against the nodes (link) removal. In graph theory, there is a set of fault-tolerance

related parameters, such as restricted-connectivity, extra-connectivity etc., which gave refined

information about how robust is a network.

Performance of the distributed system is significantly determined by the choice of the

network topology. Desirable properties of an interconnection network include low degree,

low diameter, symmetry, low congestion, high connectivity, and high fault-tolerance. For

the past several decades, there has been active research on a class of graphs called Cayley

graphs because this type of graph possesses many of the above properties. Many Cayley

graphs based on permutation groups has proven to be suitable for designing interconnection

networks, such as Star graph [1, 2, 47], Hypercubes [8], Pancake graphs [2, 79], Shuffel-

Exchange Permutation Network [50], the Rotation-Exchange Network [110]. These graphs

are symmetric, regular, and share the desirable properties described above.

In this thesis, we studied the connectivity and diagnosability of some popular network

structures. For instance, Cayley graphs generated by transpositions, expanded k-ary n-cube

and locally twisted cube.
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Chapter 1

Introduction

1.1 Network

A network is a collection of connected objects. In mathematics, graphs are used to model the

underlying structure of networks. The area of mathematics concerning the study of graphs is

called graph theory.

Graphs can represent all sorts of networks in the real world. For example, one could

describe the Internet as a network where the vertices are computers or other devices and the

edges are physical (or wireless) connection between the devices. The World Wide Web is a

huge network where the pages are vertices and hyper-links are the edges. Other examples

include social networks, networks of publications linked by citations, transportation networks,

metabolic networks, and communication networks.

An update on a graph is an operation that inserts or deletes edges or vertices of the graph

or changes attributes associated with edges or vertices, such as cost or color. By dynamic

graph we refer to the graph that is subject to a sequence of updates while static graph denote

a graph without such updates.

We can classify dynamic graph problems according to the types of updates allowed.

In particular, a dynamic graph problem is said to be fully dynamic if the updates include

unrestricted insertions and deletions of edges or vertices. A dynamic graph problem is said

to be partially dynamic if only one type of update, either insertions or deletions, is allowed.
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Research on dynamic graph typically answers queries such as, whether the graph is connected

or which is the shortest path between any two vertices.

In this thesis, we only focus on static graph, i.e., no updates are allowed. We use the term

graph if no ambiguity arises. When uses graphs to model networks, one quickly realizes

that the simple network model with identical vertices and edges cannot describe important

features of real networks. For example, the simple graph is undirected. However, in the

World Wide Web, for example, the links between pages are directed. Unfortunately, just

because linking from a page to Wikipedia’s main page doesn’t mean that Wikipedia will put

a link from their main page back to this page. Because the edges are directed in this way, we

need to use a directed graph to present the World Wide Web. In such a directed graph (or

digraph, for short), we typically draw the edges as arrows to indicate the direction.

In some networks, not all vertices and edges are created equal. For example, in metabolic

networks, vertices may indicate different enzymes which have a wide variety of behaviors,

and edges may indicate vastly different types of interactions. To model such difference, one

can introduce different types of vertices and edges in the network. In networks where the

differences among vertices and edges can be captured by a single number that, for example,

indicates the strength of the interaction, weighted graph is a good model.

In some contexts, one may work with graphs that have multiple edges between the same

pair of vertices. One might also allow a vertex to have a self-connection, meaning an edge

from the vertex itself to itself.

In the thesis, we will focus primarily on unweighted graphs with vertex and edge without

labels. In this rest of the thesis, we use network and (simple) unweighted graphs interchange-

ably.

1.2 Reliability

The reliability of a network (graph) is the capability of the network (graph) to continue

working when a number of vertices or edges have failed. The larger number of faulty
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elements (vertices) or connections (edges) that a network can tolerate, the better is the

network’s reliability.

Reliability of networks can be measured in many ways using parameters such as connec-

tivity or edge connectivity. Connectivity is one of the fundamental concepts of graph theory.

It asks for the minimum number of elements (vertices or edges) whose removal leads to the

disconnection of the graph.

When removing elements (vertices or edges) to disconnect the graph, a special case is

that such vertices are all adjacent to one vertex or edges are all incident to one vertex, which

means that a single vertex has been isolated from the rest of the graph. In this case, the

connectivity doesn’t give clear indication of the reliability of the whole of the network, as

the rest of the network might have high reliability or fault tolerance, could still function if we

ignore the isolated vertex.

To distinct the special case from the rest of the cases, there are all kinds of refined

measurements, for example, in 1983, F. Harary [39] introduced the concept of conditional

connectivity by requiring some properties for disconnected components of G−F , where F

is a vertex set whose removal leads to the disconnection of graph G. On the other hand in

1988, A.H. Esfahanian and S.L. Hakimi [29] gave generalizations of edge-connectivity by

specifying certain conditions to be satisfied by the disconnected components. For example,

there is at least one cycle in each connected part, which is well applied in Ring topology for

constructing networks.

In my study, I am using some recently proposed, practical oriented measurements such

as g-good connectivity and g-extra connectivity. These new parameters better measure the

robustness of networks.

Concerning the network topological properties, Cayley graph is highly symmetric, has

well defined hierarchical structure, highly connected and with great fault tolerance [40]. Cay-

ley Graphs become an attractive underlying topology of computer networks. For examples

see [74].

Another family of graphs is Hypercube-like networks. Owing to nice properties such

as logarithmic number of links per vertex and logarithmic diameter, high symmetry and
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high recursive constructability, linear bisection width, and exists simple efficient routing

and broadcasting algorithms, the n-dimensional Hypercube Qn has been one of the most

popular interconnection network topologies [66]. On the other hand, as was shown by Hillis

[42], hypercube do not have the smallest possible diameter. To achieve smaller diameter

with the same number of vertices and links, a variety of hypercube variants were proposed

[17, 22, 24, 26, 30, 41, 77]. Among these variations, Möbius cube [24], crossed cube [26],

twisted cube [41], and Mcube [77] have diameters of about half of the diameter of a hypercube

of the same size. A common feature of these variants is that the labels of some neighbor

vertices may differ in a large number of bits. As a result, a portion of good properties of

hypercube is lost in these variants. For example, the design of efficient parallel algorithms

on these variants turns out to be a difficult task. In this thesis, we study two families of

Hypercube-like networks, expanded k-ary n-cube and Locally Twisted Cube.

In order to keep as many nice properties of hypercube as possible, a better hypercube

variant should be conceptually closer to hypercube than existing variants. Motivated by this

intuition, we introduce a new hypercube variant. We call our topology as the n-dimensional

locally twisted cube LT Qn because its vertices can be one-to-one labeled with 0–1 binary

sequences of length n, so that the labels of any two adjacent vertices differ in at most two

successive bits. One advantage of LT Qn is that the diameter is only about half of the diameter

of Qn.

1.3 Thesis Organization

This thesis is organized as follows.

In Chapter 2, we introduce basic concepts in graph theory which will be used throughout

this thesis.

In Chapter 3, we include the background of our research with a discussion on the

relationship between different types of connectivities, showing some known results on

transitive graphs and specifically, Cayley graphs.
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In Chapter 4, we show that if G is a λ (4)-connected graph with λ (4)(G) ≤ ξ4(G) and

the girth g(G)≥ 8, and there are not six vertices u1, u2, u3, v1, v2 and v3 in G such that the

distance d(ui,v j)≥ 3 (1 ≤ i, j ≤ 3), then G is maximally 4-restricted edge-connected.

In Chapter 5, we prove that the nature diagnosability of CΓn under the PMC model and

MM∗ model is 2n− 3 except that, the bubble-sort graph B4, where n ≥ 4, and the nature

diagnosability of B4 under the MM∗ model is 4.

In Chapter 6, we show that the 2-good-neighbor diagnosability of CΓn under the PMC

model and MM∗ model is g(n−2)−1, where n ≥ 4 and g is the girth of CΓn.

In Chapter 7, we show that the connectivity of CKn is n(n−1)
2 , the nature neighbor

connectivity of CKn is n2 −n−2 and the nature diagnosability of CKn under the PMC model

is n2 −n−1 for n ≥ 4 and under the MM∗ model is n2 −n−1 for n ≥ 5.

In Chapter 8, we prove that the nature diagnosability of BSn is 4n−7 under the PMC

model for n ≥ 4, the nature diagnosability of BSn is 4n−7 under the MM∗ model for n ≥ 5.

In Chapter 9, we prove that (1) the connectivity of XQk
n is 4n; (2) the nature connectivity

of XQk
n is 8n− 4; (3) the nature diagnosability of XQk

n under the PMC model and MM∗

model is 8n−3 for n ≥ 2.

In Chapter 10, we show that LT Qn is tightly (4n−9) super 3-extra connected for n ≥ 6

and the 3-extra diagnosability of LT Qn under the PMC model and MM∗ model is 4n−6 for

n ≥ 5 and n ≥ 7, respectively.

In Chapter 11, we prove that diagnosability of Cay(Tn,Sn) is n−1 under the comparison

diagnosis model for n ≥ 4.

In Chapter 12, we show the relationship between the g-good-neighbor (extra) diagnos-

ability and g-good-neighbor (extra) connectivity of graphs.

In Chapter 13, we set up a plan for future work.



Chapter 2

Basic Concepts & Preliminary in Graph

Theory

In this chapter, we will introduce concepts, definitions and notations which will be used

throughout this thesis. Since our research is mainly focused on undirected graphs, thus we

will only introduce a few definitions in directed graphs, which mostly for helping defining

concepts for undirected graphs. If there is no ambiguity, an undirected graph is called a graph

in the thesis. For other concepts, definitions and notations which are not introduced in this

chapter, refer to [13].

2.1 Undirected Graphs

A undirected graph G is defined as a pair of sets (V (G),E(G)), where V (G) is a finite

nonempty set of elements called vertices, and E(G) is a set (possibly empty) of unordered

pairs {u,v} called edges where vertices u,v ∈ V (G). For brevity, an edge {u,v} is often

denoted by uv. V (G) is called the vertex-set of G and E(G) is called the edge-set of G. A

graph G may contain loops, that is, edges of the form {u,u}, and/or multiple edges, that is,

edges which occur more than once. A simple graph is a graph without multiple edges or

loops. We denote the number of vertices and edges in G by v(G) and e(G). The order of a

graph G is the number of vertices in G while the size of a graph G is the number of edges in G.
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Fig. 2.1 shows an example of a graph of order 7 with vertex-set {v1,v2,v3,v4,v5,v6,v7} and

edge-set {v1v4,v4v3,v3v5,v5v4,v4v7}. Different from a undirected graph, a directed graph D

is an ordered triple (V (D), A(D), ψD) consisting of a nonempty set V (D) of vertices, a set

A(D) of arcs together with an incidence function ψD that associates with each arc of D an

ordered pair of (not necessarily distinct) vertices of D.

Let u and v be vertices of a graph G. We say that u is adjacent to v if there is an edge e

between u and v, that is, e = uv. Then we call v a neighbor of u. The set of all neighbors

of u is called the neighborhood of u and is denoted by NG(v) or N(v) for short if there is no

ambiguity. We also say that both vertices u and v are incident with edge e, in other words, u

and v are the endpoints of e. For example, in Fig. 2.1, vertex v1 is adjacent to vertex v4; and

vertex v3 is incident with edges v3v4 and v3v5.

Fig. 2.1 Example of a graph

The adjacency matrix of a graph G and vertex-set V (G) = {v1,v2, ...,vn} is the n× n

matrix A = [ai j], where

ai j =

 1 if viv j ∈ E(G),

0 otherwise.

Fig. 2.2 shows a graph of order 5 with its adjacency matrix.

The degree of a vertex v of G is the number of vertices adjacent to v, that is, the number

of all neighbors of v, which is denoted by dG(v), d(v) for short if there is no ambiguity. If a

vertex v has degree 0, which means that v is not adjacent to any other vertex, then v is called

an isolated vertex, or isolate. A vertex of degree 1 is called an end vertex. In Fig. 2.1, the

degree of v4 is 4, v2 is an isolated vertex, and v1 is an end vertex. If every vertex of a graph
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Fig. 2.2 Graph and its adjacency matrix

G has the same degree then G is said to be regular. For example, the graph in Fig. 2.3 is

regular of degree 4.

Fig. 2.3 Example of a regular graph

A v0−vl walk of a graph G is a finite alternating sequence v0,e1,v1,e2, ...,el,vl of vertices

and edges in G such that ei = vi−1vi for each i, 1 ≤ i ≤ l. Such a walk may also be denoted by

v0v1...vl . We note that there may be repetition of vertices and edges in a walk. The length of a

walk is the number of edges in the walk. A v0 −vl walk is closed if v0 = vl . If all the vertices

of a v0 − vl walk are distinct, then the walk is called a path, denoted by Pk = v0v1 . . .vk. A

cycle is a closed path. In Fig. 2.3, v1v2v6v7v4v2v3 is a walk of length 6 which is not a path,

v1v2v3v4v5v6 is a path of length 5, and v1v7v3v5v1 is a cycle.

The distance from vertex u to v, denoted by d(u,v), is the length of the shortest path from

vertex u to vertex v. For example, the distance from vertex v1 to v4 of the graph in Fig. 2.3

is 2. The diameter of a graph G is the longest distance between any two vertices in G. The

girth of a graph G is the length of the shortest cycle in G. For example, the graph in Fig. 2.3

has diameter 2 and girth 3.
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A graph H is a subgraph of G if every vertex of H is a vertex of G, and every edge of

H is an edge of G. In other words, V (H) ⊂ V (G) and E(H) ⊂ E(G). Let V ′ be a subset

of V (G). The induced subgraph G[V ′] is a subgraph of G consisting of the vertex-set V ′

together with all the edges uv of G where u,v ∈V ′. In Fig. 2.4, G1 is an induced subgraph of

G, and G2 is a subgraph of G but not an induced subgraph (because in G2, v7,v8 ∈V (G) but

there is no edge between v7 and v8 while u7u8 ∈ E(G)). A spanning subgraph of a graph G

is a subgraph obtained by edge deletions only, in other words, a subgraph whose vertex set is

the entire vertex set of G. If E is the set of deleted edges, this resulting subgraph is denoted

by G\E or G−E. Observe that every simple graph is a spanning subgraph of a complete

graph. If E ′ is a set of edges, then the edge-induced subgraph G[E ′] is the subgraph of G

whose edge set is E ′ and whose vertex set consists of all end vertices of edges in E ′.

Fig. 2.4 Graph and two of its subgraphs

A complete graph on n vertices, denoted Kn, is a graph in which every vertex is adjacent

to every other vertex. Thus Kn has (n
2) =

n(n−1)
2 edges. A graph G is bipartite if V (G) can

be partitioned into two subsets V1 and V2, called partite sets, such that there are no edges

between any vertices within V1 and no edges between any vertices within V2. If G contains

all edges joining every vertex in V1 to every vertex in V2, then G is called a complete bipartite

graph. Such a graph is denoted by Km,n, where m = |V1| and n = |V2|. More generally, a

complete n-partite graph is a graph who has n partite sets V1,V2, . . . ,Vn such that two vertices

are adjacent if and only if they lie in different partite sets. If |Vi| = pi, then this graph is

denoted by Kp1,p2,...,pn . Fig. 2.5 shows examples of the complete graph K6 and the complete

bipartite graph K3,3.
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Fig. 2.5 Complete graph K6 and complete bipartite graph K3,3

A graph G is connected if for any two distinct vertices u and v of G there is a path

between u and v. Otherwise G is disconnected. A maximal connected subgraph of G is called

a connected component or simply a component of G. Thus a disconnected graph contains at

least two components. For example, the graph in Fig. 2.3 is connected, but the graph in Fig.

2.1 is disconnected (because there is no path between v2 and any other vertex).

Note that an acyclic graph is a graph that contains no cycles. A connected acyclic graph

is called a tree. A set of acyclic graphs is called forests. A vertex of degree 1 is called a leaf

in tree or forest. A nontrivial tree has at least two leaves.

In order for a graph to be connected, there must be at least one path between any two of

its vertices.

Let e be an edge of a graph G. Then G−{e} is a graph obtained from G by deleting

the edge e from G. If G−{e} is disconnected, then e is called a bridge. In general, if E1 is

any set of edges in G then G−E1 is a graph obtained from G by deleting all edges in E1.

Furthermore, E1 is called an edge cut if G−E1 is disconnected.

Similarly, if v is a vertex of a graph G, then G−{v} is a graph obtained from G by

deleting the vertex v and all edges incident with v. If G−{v} is disconnected, then v is called

a cut-vertex. A graph G is said to be a non-separable graph if it does not contain a cut-vertex.

Let V1 be a set of vertices in G. Then G−V1 is a graph obtained from G by deleting all

vertices in V1 and all edges incident with the vertices in V1. The set V1 is called a vertex cut if

G−V1 is disconnected. These concepts are illustrated in Fig. 2.6.
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Fig. 2.6 Obtaining new graphs by deleting an edge or a vertex

For two disjoint vertex sets X and Y of V (G), let [X ,Y ] be the set of edges with one end

vertex in X and the other one in Y . A matching in a graph is a set of pairwise nonadjacent

edges. If M is a matching, the two end vertices of each edge of M are said to be matched

under M, and each vertex incident with an edge of M is said to be covered by M. A perfect

matching is one which covers every vertex of the graph, a maximum matching is one which

covers as many vertices as possible. A graph is matchable if it has a perfect matching.

For a graph G = (V,E), a subset K of V is called a vertex cover of G if every edge of

E has at least one end vertex in K. A vertex cover of minimum cardinality in G is called

minimum vertex cover.

Two graphs G1 and G2 with n vertices are said to be isomorphic if there exists a one-to-

one mapping f : V (G1)→V (G2) which preserves all the adjacencies, that is, f (u) and f (v)

in G2 are adjacent if and only if u and v in G1 are adjacent. In Fig. 2.7, graphs G1 and G2

are isomorphic under the mapping f (ui) = vi, for every i = 1,2, ...,8. However, graphs G1

and G3 are not isomorphic because G1 contains cycles of length three while G3 does not and

consequently there cannot be any one-to-one mapping preserving adjacencies.

An automorphism of a graph G is a one-to-one mapping f : V (G)→ V (G) which pre-

serves all the adjacencies, that is, f (u) and f (v) are adjacent if and only if u and v are. For

example, consider the graph G2 in Fig. 2.7 under the mapping f defined by f (v1) = v3,

f (v2) = v4, f (v3) = v1, f (v4) = v2, f (v5) = v7, f (v6) = v8, f (v7) = v5, f (v8) = v6. Then f

is an automorphism of the graph G2.

A graph G is vertex-symmetric (also known as vertex-transitive) if for any two vertices x

and y of G, there exists an automorphism of G that carries u to v. For example, all graphs in
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Fig. 2.7 Isomorphism in graphs

Fig. 2.7 are vertex-symmetric, while the graph in Fig. 2.8 is not, because vertex v6 lies in

three cycles of length three, namely, v1,v5,v6; v2,v6,v7; and v5,v6,v7, while vertex v8 lies in

two cycles of length three, namely, v3,v4,v8 and v5,v7,v8. Thus in this case there cannot be

an automorphism that carries vertex v6 to vertex v8. Similarly, a graph G is edge-transitive if

given any two edges e1 and e2 of G, there is an automorphism of G that maps e1 to e2 [9]. In

other words, a graph is edge-transitive if its automorphism group acts transitively upon its

edges [61].

Fig. 2.8 Example of non-vertex-symmetric graph

2.2 Connectivity and Edge Connectivity

Recall that vertex cut of G is a subset V ′ of V such that G−V ′ is disconnected. A k-vertex

cut is a vertex cut of size k. Note that a complete graph has no vertex cut. If G has at least
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one pair of nonadjacent vertices, the connectivity of G, denoted by κ(G), is the minimum

k for which G has a k-vertex cut, otherwise, we define κ(G) to be ν − 1 and κ(G) = 0 if

G is either trivial or disconnected. G is said to be k-connected if κ(G)≥ k. All nontrivial

connected graphs are almost 1-connected.

If V ′ is a minimum vertex cut for G, then the graph can tolerate up to |V ′| − 1 faulty

vertices but cannot tolerate |V ′| faulty ones, and so its fault-tolerance, denoted by f (G), is

equal to |V ′|−1, thus f (G) = κ(G)−1. The problems of obtaining the vertex-connectivity

and fault-tolerance of a graph are equivalent.

Note that an edge cut of G is a subset of E of the form [S,S′], where S is a nonempty proper

subset of V while S′ is V\S. A k-edge cut is an edge cut of size k. If G is nontrivial and E ′ is

an edge cut of G, then G−E ′ is disconnected. We then define the edge connectivity λ ′(G) of

G to be the minimum k for which G has k-edge cut. Let λ ′(G) = 0 if G is either trivial or

disconnected. G is said to be k-edge-connected if λ ′(G)≥ k. All nontrivial connected graphs

are 1-edge-connected.

A fundamental set of edge cut sets is set of edge cut sets defined as the following: Given

a graph G. We find a spanning tree T of G, then every cut edge of T belongs to one cut set of

the fundamental set while every cut set of the fundamental set contains exactly one cut edge

of T . It can be shown that each spanning tree uniquely determines a fundamental set [37].

A graph G is super-connected, super-κ for short (resp. super-edge-connected, super-λ ,

for short), if every minimum vertex-cut (resp. edge-cut) isolates a vertex of G [10].

Let F ⊂V (G)(resp.F ⊂ E(G)), F is called a super-vertex-cut (resp. super-edge-cut) of

G if G−F is disconnected and every component has at least two vertices. Super vertex-cuts

or super-edge-cuts do not always exist. For example, K1,n has no vertex-cuts or super-edge-

cuts. The super-connectivity (resp. super-edge-connectivity) of a graph G, denoted by κ ′(G)

(resp. λ ′(G)), is the minimum cardinally over all super-vertex-cuts (resp. super-edge-cuts) if

there is any [107].

A graph G is said to be hyper-connected [12], or simply hyper-κ (resp. hyper-edge-

connected, hyper-λ , for short), if for every minimum vertex cut F of G (resp. edge-cut),

G-F has exactly two components, one of which is an isolated vertex. G is also called tightly
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|F | super-connected in [85] and hence we use these two definitions interchangeably in this

thesis.

A subset S of edges in a connected graph G is a k-restricted edge cut if G− S is dis-

connected and every component of G− S has at least k vertices. The k-restricted edge-

connectivity of G, denoted by λk(G), is defined as the cardinality of a minimum k-restricted

edge cut. A connected graph G is said to be λk-connected if G has a k-restricted edge cut.

Let ξk(G) = min{|[X , X̄ ]| : |X |= k, G[X ] is connected}, where X̄ =V (G)\X . A graph G is

said to be maximally k-restricted edge-connected if λk(G) = ξk(G).

Let F be a set of edges in G. Call F a cyclic edge-cut if G−F is disconnected and at

least two of its components contain cycles. Clearly, a graph has a cyclic edge-cut if and only

if it has two disjoint cycles. We call those graphs which have cyclic edge-cuts cyclically

separable. The cyclic edge-connectivity of G, denoted by cλ (G), is defined as follows: if G

is not connected, then cλ (G) = 0; if G is connected but does not have two disjoint cycles,

then cλ (G) = ∞; otherwise, cλ (G) is the minimum cardinality over all cyclic edge-cuts of G

[69].

Similarly, we can define cyclic vertex-connectivity of G, denoted by κc(G) [111].

The average connectivity κ(G) is defined as the average of the connectivities between all

pairs of vertices of G, that is,

κ(G) =

(
p
2

)−1

∑
{u,v}⊂V

κ(u,v)

While the (ordinary) connectivity is the minimum number of vertices whose removal

separates at least one connected pair of vertices, the average connectivity is a measure for the

expected number of vertices that have to be removed to separate randomly chosen pair of

vertices.

A graph G is hamiltonian-connected if every two vertices of G are connected by a

Hamiltonian path [13]. The second smallest eigenvalue of the Laplacian matrix is called the

algebraic connectivity [34].



2.3 Diagnosability under the PMC Model & MM∗ Model 15

In other words, a faulty set of a network is a cut set of the corresponding graph which

models the network. For a connected graph G = (V,E), we call a fault set F ⊆V a g-good-

neighbor faulty set if |N(v)∩ (V\F)| ≥ g for every vertex v in V\F . A g-good-neighbor

cut of a graph G is a g-good-neighbor faulty set F such that G−F is disconnected. The

minimum cardinality of g-good-neighbor cuts is defined as the g-good-neighbor connectivity

or g-restricted connectivity of G, denoted by κ(g)(G). A connected graph G is said to be g-

good-neighbor connected or g-restricted connected if G has a g-good-neighbor cut. Besides,

the 1-good-neighbor connectivity (resp. nature faulty set or faulty cut) is also called nature

connectivity, denoted by κ∗(G) (resp. nature faulty set or faulty cut) [67].

A connected graph G is super-nature-connected if every minimum nature cut F of V (G)

isolates one edge with its two endpoints. Additionally, if G−F has two components, one of

which is an edge with its two endpoints, then G is it tightly |F | super-nature-connected.

A fault set F ⊆V is called a g-extra faulty set if every component of G−F has at least

(g+1) vertices. A g-extra cut of G is a g-extra faulty set F such that G−F is disconnected.

The minimum cardinality of g-extra cuts is said to be the g-extra connectivity of G, denoted

by κ̃(g)(G) [114].

A connected graph G is super g-extra-connected if every minimum g-extra cut F of G

isolates one connected subgraph of order g+1. In addition, if G−F has two components,

one of which is the connected subgraph of order g+1, then G is tightly |F | super-g-extra-

connected.

2.3 Diagnosability under the PMC Model & MM∗ Model

The PMC model [59, 112] is a diagnosis model which named after the initials of the three re-

searchers: F.P. Preparata, G. Metze and R.T. Chien. To diagnose a system G = (V (G),E(G)),

two adjacent nodes in G are capable to perform tests on each other. For two adjacent nodes

u and v in V (G), the test performed by u on v is represented by the ordered pair (u,v). The

outcome of a test (u,v) is 1 (resp. 0) if u evaluate v as faulty (resp. fault-free). We assume

that the test result is reliable (resp. unreliable) if the node u is fault-free (resp. faulty). A test
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assignment T for G is a collection of tests for every adjacent pair of vertices, which can be

modeled as a directed testing graph T = (V (G),L), where (u,v) ∈ L implies that u and v are

adjacent in G. The collection of all test results for a test assignment T is called a syndrome.

Formally, a syndrome is a function σ : L 7→ {0,1}.

Recall that the set of all faulty processors in G is called a faulty set in networks. This can

be any subset of V (G). For a given syndrome σ , a subset of vertices F ⊆V (G) is said to be

consistent with σ if syndrome σ can be produced from the situation that, for any (u,v) ∈ L

such that u ∈V \F , σ(u,v) = 1 if and only if v ∈ F . This means that F is a possible set of

faulty processors. Since a test outcome produced by a faulty processor is unreliable, a given

set F of faulty vertices may produce a lot of different syndromes. On the other hand, different

faulty sets may produce the same syndrome. Let σ(F) denote the set of all syndromes which

F is consistent with. Under the PMC model, two distinct sets F1 and F2 in V (G) are said to

be indistinguishable if σ(F1)∩σ(F2) ̸= /0, otherwise, F1 and F2 are said to be distinguishable.

Besides, we say (F1,F2) is an indistinguishable pair if σ(F1)∩σ(F2) ̸= /0; else, (F1,F2) is a

distinguishable pair.

Using the MM model, which is named after two researchers: J. Maeng and M. Malekth,

diagnosis is carried out by sending the same testing task to a pair of processors and comparing

their responses. We always assume the output of a comparison performed by a faulty

processor is unreliable. In the MM model, a processor sends the same task to a pair of distinct

neighbors and then compares their responses to diagnose a system G. The comparison scheme

of G = (V (G),E(G)) is modeled as a multi-graph, denoted by M = (V (G),L), where L is the

labeled-edge set. A labeled edge (u,v)w ∈ L represents a comparison in which two vertices u

and v are compared by a vertex w, which implies uw,vw ∈ E(G). We usually assume that

the testing result is reliable (respectively, unreliable) if the node u is fault-free (respectively,

faulty). If u,v ∈ F and w ∈ V (G)\F , then (u,v)w → 1. If u ∈ F and v,w ∈ V (G)\F , then

(u,v)w → 1. If v ∈ F and u,w ∈ V (G)\F , then (u,v)w → 1. If u,v,w ∈ V (G)\F , then

(u,v)w → 0. The collection of all comparison results in M = (V (G),L) is called the syndrome

of the diagnosis, denoted by σ . If the comparison (u,v)w disagrees, then σ((u,v)w) = 1.

Otherwise, σ((u,v)w) = 0. Hence, a syndrome is a function from L to {0,1}. The MM∗
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is a special case of the MM model and each node must test all pairs of its adjacent nodes,

i.e., if uw,vw ∈ E(G), then (u,v)w ∈ L. For a given syndrome σ , a faulty subset of vertices

F ⊆V (G) is said to be consistent with σ if syndrome σ can be produced from the situation

that, for any (u,v)w ∈ L such that w ∈V \F , σ(u,v)w = 1 if and only if u,v ∈ F or u ∈ F or

v ∈ F under the MM∗ model. Let σ(F) denote the set of all syndromes which F is consistent

with. Let F1 and F2 be two distinct faulty sets in V (G). If σ(F1)∩σ(F2) = /0, we say (F1,F2)

is a distinguishable pair under the MM∗ model; else, (F1,F2) is an indistinguishable pair

under the MM∗ model.

A system G = (V,E) is g-good-neighbor t-diagnosable if F1 and F2 are distinguishable

for each distinct pair of g-good-neighbor faulty subsets F1 and F2 of V with |F1| ≤ t and

|F2| ≤ t. The g-good-neighbor diagnosability tg(G) of G is the maximum value of t such that

G is g-good-neighbor t-diagnosable.

Proposition 2.3.1 [67] For any given system G, tg(G)≤ tg′(G) if g ≤ g′.

In a system G = (V,E), a faulty set F ⊆V is called a conditional faulty set if it does not

contain all the neighbor vertices of any vertex in G. A system G is conditional t-diagnosable

if for every two distinct conditional faulty subsets F1,F2 ⊆V with |F1| ≤ t, |F2| ≤ t, F1 and

F2 are distinguishable. The conditional diagnosability tc(G) of G is the maximum number of

t such that G is conditional t-diagnosable. In [44], it was shown that tc(G)≥ t(G).

Proposition 2.3.2 [83] For a system G = (V,E), t(G) = t0(G)≤ t1(G)≤ tc(G).

In [83], Wang et al. proved that the nature diagnosability of the Bubble-sort graph Bn

under the PMC model is 2n− 3 for n ≥ 4. In [117], Zhou et al. proved the conditional

diagnosability of Bn is 4n−11 for n ≥ 4 under the PMC model. Therefore, t1(Bn)< tc(Bn)

when n ≥ 5 and t1(Bn) = tc(Bn) when n = 4.

In a system G = (V,E), a faulty set F ⊆V is called a g-extra faulty set if every component

of G−F has more than g nodes. G is g-extra t-diagnosable if and only if for each pair

of distinct faulty g-extra vertex subsets F1,F2 ⊆ V (G) such that |Fi| ≤ t, F1 and F2 are

distinguishable. The g-extra diagnosability of G, denoted by t̃g(G), is the maximum value of

t such that G is g-extra t-diagnosable.
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Proposition 2.3.3 [96] For any given system G, t̃g(G)≤ t̃g′(G) if g ≤ g′.

Proposition 2.3.4 [96] For a system G, t(G) = t̃0(G)≤ t̃g(G)≤ tg(G). In particular, t̃1(G) =

t1(G).

In [83], Wang et al. studied the nature diagnosability of CΓn under the PMC model and

MM∗ model and proved that nature diagnosability is less than or equal to the conditional

diagnosability of the system. From then on, the 1-good-neighbour diagnosability is also

called nature diagnosability since it is nature for a fault-free vertex to have at least one

fault-free neighbor vertex, comparing with the conditional diagnosability requires that a

faulty vertex in faulty set also needs to have at least one fault-free vertex.

2.4 Cayley Graph & Its Basic Properties

Let Q be a finite group, and let S be a generating set of Q such that S has no identity

element, where a finite group is a mathematical group with a finite number of elements and a

generating set of a group is a subset such that every element of the group can be expressed as

the combination (under the group operation) of finitely many elements of the subset and their

inverses. Directed Cayley graph Cay(S,Q) is defined as follows: its vertex set is Q, its arc

set is {(g,gs) : g ∈ Q,s ∈ S}. Given t ∈ S, we call every arc in {(g,gt) : g ∈ Q} a t-arc. If for

each s ∈ S we also have s−1 ∈ S, then for each pair of vertices, there are exactly two arcs of

different (opposite) directions. These two arcs between the two vertices can be regarded as

one undirected edge and then this Cayley graph is regarded as an undirected Cayley graph.

We only consider undirected Cayley graph in the thesis.

2.4.1 Circulant Graph

Let S = {a1,a2, . . . ,ak} be a set of integers such that 0 < a1 < .. . < ak < (n+ 1)/2 and

let the vertices of an n-vertex graph be labelled 0,1,2, . . . ,n−1. Then the circulant graph

C(n,S) has i±a1, i±a2, . . . , i±ak (mod n) adjacent to each vertex i. The set S is called the

symbol of C(n,S) [60].
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Circulant graphs are Cayley graphs of finite cyclic groups.

Proposition 2.4.1 [63] Every finite cyclic group is isomorphic to an additive group Zn of

residue classes modulo n for some positive integer n.

Therefore, the Cayley graphs generated by finite cyclic groups, namely circulant graphs

can be written into Cay(S′,Zn) such that S′ = {±a1,±a2, . . . ,±ak}, where −ai = n−ai, is

equivalent to the circulant graph C(n,S), for S = {a1, . . . ,ak}. Thus the class of Cayley

graphs properly contains the class of circulant graphs [60].

2.4.2 Cayley Graph Generated by Transpositions

The symmetric group defined over any set is the group whose elements are all the bijections

from the set to itself, and whose group operation is the composition of functions. In particular,

the finite symmetric group Sn defined over a finite set of n symbols consists of the permutation

operations that can be performed on the n symbols, where a permutation of a set S is defined

as a bijection from S to itself and a transposition is a permutation which exchanges two

elements and keeps all others fixed. Let S be a set of transpositions in the symmetric group

Sn. The transposition simple graph of S, denoted by T (S), is defined to be the graph with

vertex set {1, . . . ,n}, and two vertices i and j are adjacent in T (S) whenever (i, j) ∈ S [36].

Thus, the set S of transpositions in Sn can be represented by the (edge set of the) graph

T (S) on n vertices.

Proposition 2.4.2 [36] Let S be a set of transpositions in Sn. Then,

(a) S generates Sn if and only if the transposition simple graph T (S) is connected.

(b) S is a minimal generating set for Sn if and only if the transposition simple graph

T (S) is a tree.

Let S be a set of transpositions in Sn. The graph Cay(S,Sn) is called a Cayley graph

generated by transpositions. If n is even, say n = 2k, and T (S) is the graph kK2 consisting of

k independent edges, then the Cayley graph Cay(S,< S >) is isomorphic to the hypercube
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graph Qn. Various families of Cayley graphs generated by transpositions have been well-

studied and they have specific names [40, 49].

Let S be a set of transpositions in Sn. Let T (S) denote the transposition simple graph

of S. If T (S) is the star K1,n−1, then Cay(S,Sn) is the star graph. If T (S) is the path graph

Pn on n vertices, then Cay(S,Sn) is called the bubble-sort graph. If T (S) is the cycle graph

Cn, then Cay(S,Sn) is called the modified bubble-sort graph. If T (S) is {(1, i) : 2 ≤ i ≤

n}∪{(i, i+1) : 2 ≤ i ≤ n−1}, then Cay(S,Sn) is the bubble-sort star graph. If T (S) is the

complete graph Kn, then Cay(S,Sn) is called the complete transposition graph. If T (S) is the

complete bipartite graph Kk,n−k, then Cay(S,Sn) is called the generalized star graph.

If the transposition simple graph T (S) is a tree, we denote it by Γn and the corresponding

Cayley graph by CΓn. If the transposition simple graph T (S) is a complete graph Kn, it is

also said to be a nest graph, denoted by CKn [87]. If the transposition simple graph T (S) is

{(1, i) : 2 ≤ i ≤ n}∪{(i, i+1) : 2 ≤ i ≤ n−1}, the bubble-sort star graph is also denoted by

BSn.

Proposition 2.4.3 [91] Let H be a simple connected graph with n = |V (H)| ≥ 3. If H1

and H2 are two different labelled graph obtained by labelling H with {1,2, . . . ,n}, then

Cay(H1,Sn) is isomorphic to Cay(H2,Sn).

By Theorem 2.4.3, a simple connected graph H can be labelled properly. When n ≥

4, Cay(H,Sn) can be decomposed into smaller Cay(S∗,Sn−1)’s as follows, where S∗ is

a spanning set of Sn−1. Given an integer p with 1 ≤ p ≤ n, let Hi be the subgraph of

Cay(H,Sn) induced by vertices with i in the pth position for 1 ≤ i ≤ n. We say Cay(H,Sn)

is decomposed along the pth position. When H is a tree Tn, we assume that one vertex of

degree one is labelled by n in Tn. If we decompose Cay(H,Sn) along the last position, then

Hi and Cay(Tn − n,Sn−1) are isomorphic. The edges whose end vertices in different Hi’s

are the cross-edges with respect to the given decomposition. Suppose that the transposition

simple graph H is the complete graph Kn. If we decompose Cay(H,Sn) along last position, it

is clear to see that Hi and Cay(H −n,Sn−1) are isomorphic. Besides, we denote Ei, j(G) =

EG(V (Hi),V (H j)) for i, j ∈ {1, . . . ,n}.
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Proposition 2.4.4 [1] κ(Cay(Tn,Sn) = n−1.

Proposition 2.4.5 [1] For any integer n ≥ 1, Cay(Tn,Sn) is (n − 1)-regular and vertex-

transitive.

2.4.3 Hypercube & k-Ary n-Cube

The hypercube Qn is defined to be the graph on vertex set {0,1}n, and two binary strings

x = x1 . . . ,xn and y = y1 . . . ,yn are adjacent vertices in Qn if and only if they differ in exactly

one coordinate. There are other equivalent definitions of the hypercube. Note that the

hypercube is isomorphic to the Cayley graph of the permutation group generated by n disjoint

transpositions, and so the hypercube graph could have also been defined as a particular kind

of Cayley graph.

Let Fn
2 be the n-dimensional vector space over the binary field F2. The set of unit vectors

ei(i = 1, . . . ,n) is a basis for the vector space Fn
2 , where a basis is a (finite or infinite) set

B = bi of vectors bi’s that spans the whole space and is linearly independent. "Spanning

the whole space" means that any vector v can be expressed as a finite sum (called a linear

combination) of the basis elements. Note that Fn
2 is an abelian group Zn

2 under the operation

of vector addition, and the subgroups of Zn
2 correspond to the subspaces of the vector space.

Note that the Cayley graph of the abelian group Zn
2 with respect to the set of n unit vectors

ei(i = 1, . . . ,n) is isomorphic to the hypercube graph Qn. Therefore, we view Qn as the

Cayley graph Cay(S,Zn
2), where S = {e1, . . . ,en} with mod 2.

The hypercube Qn is an n-regular, vertex-transitive graph on 2n vertices. For x,y ∈

V (Qn) = Zn
2 , xy is an edge of Qn iff x+ y = ei for some i, this edge is said to have edge label

(or color) ei or to be of dimension i. If y = 1 . . .10 . . .0 is a vertex consisting of k 1’s and

n−k 0’s, then the distance from y to the identity vertex e = 0 . . .0 is exactly k. The path from

e to y can be described by a sequence (e1,e2, . . . ,ek) of labels of the edges on the path.

El-Amawy and Latifi [27] proposed the folded hypercube graph as a topology for inter-

connection networks. The folded hypercube graph FQn (n ≥ 2) is defined to be Cayley graph

Cay(S,Zn
2), where Zn

2 is the abelian group consisting of all 0-1 vectors of length n (with mod
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2, componentwise addition) and the generating set S = e1, . . . ,en,u, with u = e1 + . . . ,en. In

other words, the folded hypercube FQn is obtained by taking the hypercube Qn and adding

edges (corresponding to the generator u) which join each vertex to its diametrically opposite

vertex.

The augmented cube AQn is the Cayley graph Cay(S,Zn
2), where S = {e1, . . . ,en} ∪

{00 . . .00011, 00 . . .00111, 00 . . .01111, . . ., 11 . . .1111} with mod 2.

k-ary n-cube is defined as the generalization of Hypercube. It is the Cayley graph

Cay(S,Zn
k ), where S = {±e1, . . . ,±en} with mod k. Similar to the augmented cube AQn,

the augmented k-ary n-cube AQn,k is defined as the Cayley graph Cay(S,Zn
k ), where S =

{±e1, . . . ,±en} ∪ {±00 . . .00011, ±00 . . .00111, ±00 . . .01111, . . ., ±11 . . .1111} with

mod k.

The expanded k-ary n-cube, denoted by XQk
n (n ≥ 1 and even k ≥ 6), is a graph consisting

of kn vertices {u0u1 . . .un−1 : 0 ≤ ui ≤ k−1,0 ≤ i ≤ n−1}. Two vertices u = u0u1 . . .un−1

and v = v0v1 . . .vn−1 are adjacent if and only if there exists an integer j ∈ {0,1, . . . ,n−1}

such that u j = v j+g (mod k) and ui = vi, for i∈ {0,1, . . . ,n−1}\{ j} and g∈ {1,−1,2,−2}.

For clarity of presentation, we omit writing “(mod k)” if there is no ambiguity. We give two

examples as Fig. 2.9 and Fig. 2.10.

Fig. 2.9 The expanded 6-ary 1-cube XQ6
1

As shown above, it is straightforward to see that the expanded k-ary n-cube is the

generalization of k-ary n-cube and also a Cayley graph Cay(S,Zn
k ), where S= {±e1, . . . ,±en}

∪ {±2e1, . . . ,±2en} with mod k.
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Fig. 2.10 The expanded k-ary 1-cube XQk
1

2.5 Hypercube Variants

As was shown by Hillis [42], the hypercube does not have the smallest possible diameter.

To achieve smaller diameter with the same number of nodes and links as an n-dimensional

cube, a variety of hypercube variants were proposed [22, 41, 77]. Among these variations,

Möbius cube, crossed cube, twisted cube, and Mcube have diameters of about half of that of

a hypercube of the same size. A common feature of these variants is that the labels of some

neighboring nodes may differ in a large number of bits. As a result, certain properties of

hypercube are lost in these variants. For example, the design of efficient parallel algorithms

on these variants turns out to be a difficult task.

In order to keep as many nice properties of hypercube as possible, a better hypercube

variant should be conceptually closer to hypercube. Motivated by this intuition, a new

hypercube variant was introduced [41]. The new topology is said to be the n-dimensional

locally twisted cube LT Qn because its nodes can be one-to-one labeled with 0-1 binary

sequences of length n, so that the labels of any two adjacent nodes differ in at most two
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successive bits. One advantage of LT Qn is that the diameter is only about half of the diameter

of Qn.

For an integer n≥ 1, a binary string of length n is denoted by u1u2 . . .un, where ui ∈ {0,1}

for any integer i ∈ {1,2, . . . ,n}. The n-dimensional locally twisted cube, denoted by LT Qn,

is an n-regular graph of 2n vertices and n2n−1 edges, which can be recursively defined as

follows [109].

For n ≥ 2, an n-dimensional locally twisted cube, denoted by LT Qn, is defined recursively

as follows: 1). LT Q2 is a graph consisting of four nodes labeled with 00, 01, 10 and 11,

respectively, connected by four edges {00, 01}, {01, 11}, {11, 10} and {10, 00}. 2). For

n ≥ 3, LT Qn is built from two disjoint copies of LT Qn−1 according to the following steps.

Let 0LT Qn−1 denote the graph obtained from one copy of LT Qn−1 by prefixing the label of

each node with 0. Let 1LT Qn−1 denote the graph obtained from the other copy of LT Qn−1

by prefixing the label of each node with 1. Connect each node 0u2u3 · · ·un of 0LT Qn−1 to

the node 1(u2 +un)u3 · · ·un of 1LT Qn−1 with an edge, where "+" represents the modulo 2

addition.

The edges whose end vertices in different iLT Qn−1s are called to be cross-edges. Figs.2.11,

Figs.2.12 and Figs.2.13 show four examples of locally twisted cubes. The locally twisted

cube can also be equivalently defined in the following non-recursive fashion.

Fig. 2.11 LT Q2 and LT Q3

For n ≥ 2, the n-dimensional locally twisted cube, denoted by LT Qn, is a graph with

{0,1}n as the node set. Two nodes u1u2 · · ·un and v1v2 · · ·vn of LT Qn are adjacent if and only

if either one of the following conditions are satisfied. 1). ui = vi and ui+1 =(vi+1+vn)(mod2)
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Fig. 2.12 LT Q4

for some 1 ≤ i ≤ n− 2, n ≥ 3 and u j = v j for all the remaining bits; 2). ui = vi for i ∈

{n−1,n}, n ≥ 2 and u j = v j for all the remaining bits[109].

Since the labels of any two adjacent nodes differ in at most two successive bits in LT Qn,

it is clear to see that we could not construct one generating set S which determines N(u) and

N(v) for any two vertices u,v ∈V (LT Qn), where n ≥ 3. Therefore, LT Qn does not belong to

Cayley graphs, where n ≥ 3.
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Fig. 2.13 LT Q5



Chapter 3

Connectivities of Cayley Graphs

3.1 Relationship Between Different Types of Connectivi-

ties

Connectivity is one of the basic concepts of graph theory, it asks for the minimum number of

elements (vertices or edges) that need to be removed to disconnect the graph.

Let v be a vertex in G, where v has the minimum degree δ (G), if one removes all the

vertices adjacent to the vertex v or all edges are incident to v, then we have disconnected v

from the rest of the graph G. Thus we know that κ(G)≤ κ ′(G)≤ δ (G).

If κ(G) = δ (G) (resp. κ ′(G) = δ (G)), the G is said to be maximally connected (resp.

maximally edge-connected). If κ(G)< δ (G) (resp. κ ′(G)< δ (G)), then G is not maximally

connected (resp. maximally edge-connected), which also means after removing a minimum

cut set, each component has at least two vertices.

If κ(G) = δ (G) (resp. κ ′(G) = δ (G)), it is not necessary that every minimum vertex cut

(resp. edge cuts) is a neighbours of a vertex. If every minimum vertex-cut (resp. edge-cut)

isolates a vertex of G, which also means every minimum vertex cut (resp. edge cut) is N(v)

(resp. Ne(v)), G is super-connected, super-κ , for short (resp. super-edge-connected, super-λ ,

for short).
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When the graph is maximally connected, i.e. κ(G) = κ ′(G) = δ (G), we are then inter-

ested in finding a minimum vertex cut (edge cut), whose removal leads to the disconnection

of a super-connected graph, where each component has at least two vertices. The cardinality

of such conditional vertex cut (resp. edge cut) is said to be super-connectivity κs(G) (resp.

super-edge-connectivity λs(G)) and if G is super-connected (resp. super-edge-connected),

we have κs(G)> δ (G) (resp.λs(G)> δ (G)). On the other hand, we observed that if a graph

G is maximally connected (resp. maximally edge-connected) but not super-connected (resp.

super-edge-connected), by the definition, the minimum vertex cut (resp. edge cut) of size

δ (G) already guarantees that its removal leads to the disconnection of G and each component

has at least two vertices and hence κs(G) = δ (G) (resp.λs(G) = δ (G)).

Recall a graph G is hyper-connected, hyper-κ , for short, (resp. hyper-edge-connected,

hyper-λ , for short) if every minimum vertex-cut (resp. edge-cut) disconnects G into exactly

two components, one of which is an isolated vertex. If a graph G is super-(edge)-connected

and there are exactly two components after the removal of minimum vertex (edge) cut, the

graph is hyper-(edge)-connected. On the contrary, every hyper-(edge)-connected graph G is

super-(edge)-connected.

As a framework, H. Harary [39] has introduced the concept of conditional connectivity

by requiring some properties for each component after the removal of a vertex cut or a edge

cut. Apart from the super-connectivity (resp. super-edge-connectivity), there are well-known

conditional connectivities such as cyclic vertex(edge)-connectivity, g-extra connectivity,

g-restricted connectivity and g-good-neighbor connectivity [67, 69, 114].

Firstly, let’s see the relationship of maximally (edge)-connectedness, super-(edge)-

connectedness, hyper-(edge)-connectedness and cyclic vertex(edge)-connectivity. For a

connected graph G with at least two disjoint cycles, if we have κc(G)< δ (G)(cλ (G)< δ (G)),

it is clear that G is not maximally (edge)-connected and hence not super-(edge)-connected.

On the contrary, if G is maximally (edge)-connected, then it is straightforward to see that

κc(G) ≥ δ (G)(cλ (G) ≥ δ (G)). Moreover, if G is super-(edge)-connected(hyper-(edge)-

connected), then straightforwardly we have κc(G)> δ (G)(cλ (G)> δ (G)).
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Next, let’s see the relationship between super-connectivity (resp. super-edge-connectivity)

and restricted connectivity (resp. restricted edge-connectivity). The definition of the two

concepts are very similar. The original definitions of these two concepts are as shown in the

follow figures.

Fig. 3.1 First introduction of super connectivity [7].

A subset F ⊂V (G) is said to be nontrivial if it doesn’t contain N(v) as its subset for some

vertex v ∈V (G)/F , and a subset B ⊂ E(G) is said to be nontrivial if it contains no Ne(v) as

its subset for some vertex v ∈ V (G). A nontrivial vertex-set (reps. edge-set) S is called a

nontrivial vertex-cut (resp., edge-cut) if G−S disconnected. The super-vertex-connectivity

κs(G) (resp., edge-connectivity λs(G)) of a connected graph G is defined as the minimum

cardinality of a nontrivial vertex-cut (resp. edge-cut) if G has a nontrivial vertex-cut (resp., a

nontrivial edge-cut), and does not exist otherwise, denoted by ∞ [7, 104]. For the original

definition, see Fig. 3.1.

Recall that Esfahanian and Hakimi [28, 29] generalized the notion of connectivity by

introducing the concept of the restricted connectivity from the point of view of communication
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Fig. 3.2 First introduction of restricted connectivity [29].

network. In their paper, they have defined the following: A set S ⊂V (G) (resp. S ⊂ E(G))

is called a restricted vertex-set (resp. edge-set) if it contains no N(x) (resp. Ne(x)) as its

subset for any vertex x ∈V (G). A restricted vertex-set (resp., edge-set) S is called a restricted

vertex-cut (resp., edge-cut) if G−S is disconnected. The restricted vertex-connectivity (resp.,

edge-connectivity) of a connected graph G, denoted by κr(G) (resp., λr(G)), is defined as

the minimum cardinality of a restricted vertex-cut (resp., edge-cut) if G has a restricted

vertex-cut (resp., edge-cut), and does not exist otherwise.

The four parameters κs, κr, λs and λr in conjunction with κ and λ can provide more

accurate measurements for fault-tolerance of a large-scale interconnection network. What

relationships exist between κs and κr, λs and λr?

From definitions, there is no difference between two concepts of nontrivial edge-cuts

and restricted edge-cuts, and so λs(G) = λr(G) for any graph G provided the edge cuts exist.

However, there is a slightly difference between two concepts of nontrivial vertex-cuts Ss

and restricted vertex-cuts Sr. We observed that Ss requires Ss contains no N(v) of vertex

v ∈V (G−S) while Sr requires Sr contains no N(v) of vertex v ∈V (G), which means u ̸∈ Sr if

Sr contains N(u) but u ∈ Ss if Ss contains N(u). It is clear to obtain the following proposition.
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Proposition 3.1.1 [106] Let G be a connected graph, neither K1,n nor K3. Then

(1) κr(G)≥ κs(G)≥ κ(G), and if κs(G)> κ(G) = δ (G) then G is super-connected.

(2) λr(G) = λs(G)≥ λ(G), and if λs(G)> λ (G) = δ (G) then G is super-edge-connected.

Further to the above mentioned connectivity measurements, g-restricted connectivity was

introduced by Wan and Zhang [81] as the generalization of restricted (vertex) connectivity

in 2009. However, g-restricted edge connectivity, which was introduced by Fàbrega and

Fiol [31, 32] has a property that each disconnected component contains at least g vertices,

while g-restricted connectivity requires the minimum degree of each component is g in

1994. Besides, in 1996, g-extra connectivity, which was introduced by Fàbrega ans Fiol [32]

can be seen as another generalization of restricted (vertex) connectivity that requires each

component has size at least g+1.

In 2012, Peng et al. [67] proposed a new measure for fault diagnosis of the system, namely,

the g-good-neighbor diagnosability (which is also called the g-good-neighbor conditional

diagnosability), which requires that every fault-free node has at least g fault-free neighbors.

The g-good-neighbor property is in fact equivalent to the g-restricted connectivity used in

previous works. In this thesis, we use these two concepts interchangeably. However, here we

note that the g-restricted property was introduced in graph theory, where people pay more

attention to the static graphs. Thus, the reliability of vertices in these graphs is fixed, i.e.,

the vertices are totally faulty or fault-free. On the other hand, the term g-good-neighbor is

usually used in the area of computer networks, which could be applied to dynamic graphs.

3.2 Connectivity of Symmetric Graphs

In many applications, such as the design of computer networks, it is desired that the network

(graph) remains connected even if some of the vertices or links in the network (graph) fail.

Recall that the fault-tolerance of a graph G, denoted by f (G), is the maximum number of

faults (vertex failures) that can be tolerated without disconnecting the graph. In the definition

of this graph parameter, it is assumed that the faulty vertices are chosen by an adversary (this

is the worst case scenario).
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Edge-transitive graphs and vertex-transitive graphs are excellent candidate for network

topology, in particular, their symmetry properties imply that they are maximally (edge)-

connected, i.e. highly fault-tolerance.

Mader [58] proved the following result:

Theorem 3.2.1 [58] If G is a connected vertex-transitive graph, then it is maximally edge-

connected.

This result settles the question of edge-connectivity for all vertex-transitive graphs and in

particular for all Cayley graphs.

Watkins [102] obtained the following sufficient condition for a graph to be maximally

connected.

Theorem 3.2.2 [102] If G is a connected edge-transitive graph, then its vertex-connectivity

κ(G) is equal to its minimum degree δ (G).

Another sufficient condition for a graph to be maximally connected was obtained by

Mader [57]:

Theorem 3.2.3 [57] If G is a connected vertex-transitive graph which does not contain a K4,

then its vertex-connectivity κ(G) is equal to its minimum degree δ (G).

Sufficient conditions for a graph to be maximally connected are given in Theorem 3.2.2

and Theorem 3.2.3. However, there exist graphs which do not satisfy the hypotheses of these

assertions and are still maximally connected, for example, some families of circulants and

the family of augmented cubes are neither edge-transitive nor K4-free but are maximally

connected.

3.3 Maximally Connected Cayley Graphs

3.3.1 Maximally Edge-Connected Cayley Graphs

It is known from the paper [36] that
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Theorem 3.3.1 [36] All Cayley graphs are vertex-transitive.

Combined with Theorem 3.2.1, we know that all connected Cayley graphs are maximally

edge-connected and hence κ ′(G) = δ (G).

In terms of the maximally vertex-connectedness, if the generating set of a Cayley graph G

consists of transpositions, it is clear have that G has no odd cycle. Combined with Theorem

3.2.3, we have G is maximally vertex-connected. Some well-known topology networks

(graphs) such Bubble-sort Graphs, Star Graphs are maximally vertex-connected.

3.3.2 Maximally Connected Circulant Graphs, Hypercubes & Gener-

alized Hypercubes

Recall that there exist graphs which do not satisfy the hypotheses of these assertions of

Theorem 3.2.2 and Theorem 3.2.3 and which are still maximally connected. Boesch and

Tindell [10] characterized the circulants which are maximally connected.

Theorem 3.3.2 [10] The circulants C(n,S), 1 ≤ i ≤ k, satisfies κ < δ if and only if for some

proper divisor m of n, the number of distinct positive residues modulo m of the numbers

a1, . . . ,ak,n−ak, . . . ,n−a1 is less than the minimum of m−1 and δm/n.

Theorem 3.3.3 [36] The hypercube graph Qn is maximally connected.

As we discussed in chapter 2, the folded hypercube FQn is obtained by taking the

hypercube Qn and adding edges (corresponding to the generator u) which join each vertex

to its diametrically opposite vertex. The motivation for adding these complementary edges

to the hypercube is that they reduce the diameter of the graph from n to about n/2. If two

vertices in FQn differ in more than half of the coordinates, a shorter path between these

two vertices is obtained by using the complementary edge. For example, the length of a

shortest path in FQ6 from vertex e = 000000 to vertex 011111 is 2; one such shortest path

is the path corresponding to the sequence of edge labels (or generators) (u, e1). The folded

hypercube FQn is a regular graph of degree n+ 1. Thus, its vertex-connectivity satisfies

κ(FQn)≤ n+1.
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Theorem 3.3.4 [36] The folded hypercube FQn (n ≥ 4) is maximally connected.

The augmented cube AQn is the Cayley graph Cay(Zn
2 ,S), where S = {e1, . . . ,en} ∪

{00 . . .00011, 00 . . .00111, 00 . . .01111, . . ., 11 . . .1111}.

Theorem 3.3.5 [23]The augmented cube AQn is maximally connected.

The augmented cubes are maximally connected.. However, the augmented cube graphs

are neither edge-transitive nor K4-free.

Theorem 3.3.6 [109] The locally twisted cube LT Qn is maximally connected.

3.3.3 Maximally Connected Cayley Graphs Generated by Transposi-

tions

In 2009, Ganesan [35] characterized the isomorphism and edge-transitivity of Cayley graphs

generated by transpositions:

Theorem 3.3.7 Let S be a set of transpositions generating Sn. The Cayley graph Cay(S,Sn)

is edge-transitive if and only if the transposition graph T (S) is edge-transitive.

Theorem 3.3.8 Let S be a set of transpositions generating Sn. Then, the Cayley graph

Cay(Sn,S) is edge-transitive if and only if the transposition simple graph T (S) is edge-

transitive.

Recall that if a graph is edge-transitive, then it is maximally connected. Thus, combining

Theorem 3.3.7 and Theorem 3.3.8, we have the following.

Theorem 3.3.9 [36] Let S be a set of transpositions generating Sn. Then, Cay(S,Sn) is

maximally connected.

Since all Cayley graphs generated by transpositions are bipartite, hence are K4-free. By

Theorem 3.2.3, we can also conclude the above theorem that all Cayley graphs generated by

transpositions are maximally connected.
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3.4 Super-Connected Cayley Graphs

Considering the definitions of maximally (edge)-connected, super-connected and hyper-

connected, it is clear that if a Cayley graph G is super-(edge)-connected or hyper-(edge)-

connected, G is maximally (edge)-connected.

In 2003, Meng [61] proved the following two theorems:

Theorem 3.4.1 [61] A connected vertex and edge-transitive graph is not super-connected

if and only if it is isomorphic to the lexicographic product of a cycle Cn (n ≥ 6) or the line

graph L(Q3) of the cube Q3 by a null graph Nm.

Theorem 3.4.2 [61] A connected vertex and edge-transitive graph G is not hyper-connected

if and only if either G ∼=Cn(n ≥ 6) or G ∼= L(Q3), or there exists a pair of vertices having the

same neighbor sets and the number of vertices of G is at least k+3, where k is the regularity.

Based on this paper, we know if a maximally vertex-connected Cayley Graph is super-

connected or hyper-connected.

3.4.1 Super-(Edge)-Connected Circulant Graphs & Hypercubes

It is known that Cayley graphs are vertex-transitive but not necessarily edge-transitive. It is

well known that a circulant graph Cn(a1,a2, . . . ,ak) is connected if and only if g.c.d.(n,a1,a2,

. . . ,ak) = 1, and the edge connectivity of every connected vertex-transitive graph attains its

minimum degree. In [11], Boesch and Wang gave a necessary and sufficient conditions for a

circulant graph to be super-edge-connected.

Theorem 3.4.3 [11] A connected circulant is super-edge-connected unless it is Cp(a) or

C2n(2,4,6, . . . ,n−1,n) for n odd.

Recursive circulant graphs G(2m,4) was proposed by Park and Chwa [80]. This family

belongs to the family of circulant graphs denoted by G(N,d) with N, d ∈ N. The vertex set

of G(N,d) is {0,1, . . . ,N −1}. Two vertices, u and v, are adjacent if and only if u±di ≡ v

(mod N) for some i with 0 ≤ i ≤ ⌈logdN⌉−1.



3.4 Super-Connected Cayley Graphs 36

Theorem 3.4.4 [80] G(2m,4) is super-connected if and only if m ̸= 2.

Various networks (graphs) are proposed by twisting some pairs of links in hypercubes.

Because of the lack of the unified perspective on these variants, results of one topology are

hard to extend to others. To make a unified study of these variants, Vaidya et al. introduced

the class of hypercube-like graphs. We denote these graphs as H ′-graphs. The class of

H ′-graphs, consisting of simple, connected, and undirected graphs, contains most of the

hypercube variants [45].

Now, we can define the set of n-dimensional H ′-graph, H ′
n as follows:

1. H ′
1 = {K2}, where K2 is the complete graph with two vertices. 2. Assume that G0,

G1 ∈ H ′
n, then G0 ⊕G1 is graph in H ′

n+1, where N is any perfect matching between V (G0) to

V (G1).

Theorem 3.4.5 [45] Every graph in H ′
n is both super-connected and super-edge-connected

if n ≥ 2.

3.4.2 Super-Connected Cayley Graphs Generated by Transpositions

As we discussed in chapter 2, we use the transposition simple graph to form the Cayley

graphs generated by transpositions.

For the first result, the transposition simple graph is tree.

Theorem 3.4.6 [21] Let Gn be the unidirectional Cayley graph generated by a labelling of a

transposition generating tree Tn on n vertices where n ≥ 8. Then Gn is super-connected.

Then Lemma 3.4.7 is used in the proof of Theorem 3.4.8. For the Cayley graph in

Theorem 3.4.8, its transposition simple graph is a normal simple graph with the given

restraints.

Lemma 3.4.7 [19] Suppose A is a connected graph with n ≥ 5 vertices and m edges. If p

is the minimum degree of all the non-cut-vertices, then m ≥ max{n+ p−2,2p− l,4p−6}.

Moreover, if p ≥ 3, then m ≥ 2p.
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Theorem 3.4.8 [19] Suppose G is a Cayley graph obtained from a transposition simple

graph S with m edges on {1,2, . . . ,n}. If n > 3, then G is maximally connected. If n ≥ 4,

then G is tightly super-connected.

3.5 Hyper-Connected Cayley Graphs & Other Conditional

Connectivities of Cayley Graphs

Graphs should be very well-structured to fulfill the requirements to be hyper-connected. Here

we give a theorem to show three hyper-connected Cayley graphs.

Theorem 3.5.1 [55] Let T be a minimal generating set for the symmetric group Sn and let

Un be the set of all transpositions in Sn. Then

(1) for n ≥ 2, hypercube Qn is hyper-κ .

(2) for n ≥ 4, X =C(Sn,Un) is hyper-κ .

(3) for n ≥ 4, X =C(Sn,T ) is hyper-κ .

Note that X = C(Sn,Un) is a complete transposition graph and X = C(Sn,T ) includes

star graph, bubble-sort graph. We have that complete transposition graph, star graph and

bubble-sort graph are hyper-κ .

Recall a graph G is super-λ (n) if λ (m)(G) = ξm(G) (1 ≤ m ≤ n). If a graph G is super-

λ (n), then the n-restricted edge-connectivity is ξn(G). Then we have the following results of

n-restricted edge-connectivity for the some families of Cayley graphs.

Theorem 3.5.2 [54] Let G = G(n;a1,a2, . . . ,ak) be a connected circulant with k ≥ 2 and

ak < n/2. Then, the 2-restricted edge-connectivity of G, λ (2)(G) = 4k−2.

Theorem 3.5.3 [11] Let G =Cn(a1,a2, . . . ,ak) be a connected circulant graph with k ≥ 2,

then G is super-λ (2) if and only if one the three conditions holds:

(1) ak < n/2;

(2) ak = n/2 and g.c.d.(n,a1, . . . ,ak−1) = 1; or

(3) ak = n/2, g.c.d.(n,a1, . . . ,ak−1) = 2 and n ≥ 8k−8
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Theorem 3.5.4 [62] Star graphs Cay(S,Sn) and hypercubes Qn are super-λ (3) for n ≥ 3.

Moreover, Meng et al. [62] give the necessary and sufficient conditions that circulant

graphs, G =Cn(a1,a2, . . . ,ak) with n ≥ 6, k ≥ 2 and ak < n/2 are super-λ (3).

We have the following results of n-restricted connectivity and n-extra connectivity for

some families of Cayley graphs.

In [105], Xu et al. determined the 1-restricted, 1-extra connectivity and 2-extra connec-

tivity of hypercube Qn, where n ≥ 3.

Theorem 3.5.5 [105] κ̃(1)(Qn) = κ∗(Qn) = 2n−2, n ≥ 3.

Theorem 3.5.6 [105] κ̃(2)(Qn) = 3n−5, n ≥ 4.

Then, they proved that 1-extra connectivity and 2-extra connectivity of folded hypercube

FQn are 2n for n ≥ 4 and 4n−4 for n ≥ 8, respectively.

Theorem 3.5.7 [105] κ̃(1)(FQn) = κ∗(FQn) = 2n, n ≥ 4.

Theorem 3.5.8 [105] κ̃(2)(FQn) = 4n−4, n ≥ 8.

In the end, the g-restricted connectivity of hypercube Qn is also proved as follow, where

n ≥ 3 and 1 ≤ g ≤ n−2.

Theorem 3.5.9 [64, 103] Assume that n ≥ 3 and 1 ≤ g ≤ n−2. Then κ(g)(Qn) = (n−g)2g.



Chapter 4

Sufficient Conditions for Graphs to be

Maximally 4-Restricted Edge-Connected

In this chapter, we show that if G is a λ4-connected graph with λ4(G) ≤ ξ4(G), the girth

g(G) ≥ 8, and there do not exist six vertices u1, u2, u3, v1, v2 and v3 in G such that the

distance d(ui,v j)≥ 3 (1 ≤ i, j ≤ 3), then G is maximally 4-restricted edge-connected. The

results in this chapter is published in the Australasian Journal of Combinatorics [82].

4.1 Background & Known Results

There is a significant amount of research on k-restricted edge-connectivity [3, 5, 16, 29,

31, 32, 38, 92, 93, 99, 100, 113]. The larger λk(G) is, the more reliable the network G is

[4, 62, 101]. So, we would like the λk(G) to be as large as possible when design a network

topology.

Let’s look at the upper bound of λk(G). For any positive integer k, let ξk(G)=min{|[X , X̄ ]| :

|X | = k, G[X ] is connected}, where X̄ = V (G)\X . It has been shown that λk(G) ≤ ξk(G)

holds for many graphs [6, 14, 65, 115].

Let G1, . . . ,Gn be n copies of Kt . Add a new vertex u and let u be adjacent to every vertex

in V (Gi), i = 1, . . . ,n. The resulting graph is denoted by G∗
n,t . It can be verified that G∗

n,t
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has no (δ (G∗
n,t)+1)-restricted edge cuts and G∗

n,t is the only exception for the existence of

k-restricted edge cuts of a connected graph G when k ≤ δ (G)+1.

Theorem 4.1.1 [115]. Let G be a connected graph with order at least 2(δ (G)+1) which is

not isomorphic to G∗
n,t with t = δ (G). Then for any k ≤ δ (G)+1, G has k-restricted edge

cuts and λk(G)≤ ξk(G).

A λk-connected graph G is said to be maximally k-restricted edge-connected if λk(G) =

ξk(G). When k = 2, the k-restricted edge-connectivity of G is the restricted edge-connectivity

of G. A maximally k-restricted edge-connected graph is a maximally restricted edge-

connected graph. For the research on maximally restricted edge-connected graphs, see

[70, 95, 98, 101].

Let G be a λk-connected graph and let S be a λk-cut of G. In 1989, Plesník and Znám

[68] gave the following sufficient condition for a graph to be maximally edge-connected.

Theorem 4.1.2 [68] Let G be a connected graph. If there are not four vertices u1,u2,v1,v2

in G such that the distanced(ui,v j)≥ 3 (1 ≤ i, j ≤ 2), then G is maximally edge-connected.

In 2013, Qin et al. [70] gave the following theorem.

Theorem 4.1.3 [70] Let G be a λ2-connected graph with the girth g(G)≥ 4. If there are not

four vertices u1,u2,v1,v2 in G such that the distance d(ui,v j)≥ 3 (1 ≤ i, j ≤ 2), then G is

maximally restricted edge-connected.

In 2015, Wang et al. [89] gave the following theorem.

Theorem 4.1.4 [89] Let G be a λ3-connected graph with the girth g(G)≥ 5. If there are not

five vertices u1,u2,v1,v2, ,v3 in G such that the distance d(ui,v j)≥ 3 (1 ≤ i ≤ 2;1 ≤ j ≤ 3),

then G is maximally 3-restricted edge-connected.

In this chapter, we extend the above result to λ4-connected graph
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4.2 Main Results

We firstly give an existing result.

Lemma 4.2.1 [93] Let G be a λk-connected graph with λk(G)≤ ξk(G) and let S = [X ,Y ] be

a λk-cut of G. If there exists a connected subgraph H of order k in G[X ] with the property

that

∑
v∈X\V (H)

|N(v)∩V (H)| ≤ ∑
v∈X\V (H)

|N(v)∩Y |,

then G is maximally k-restricted edge-connected.

For a λ4-connected graph, we have,

Theorem 4.2.2 Let G be a λ4-connected graph with λ4(G)≤ ξ4(G) and let the girth g(G)≥

8. If there are not six vertices u1, u2, u3, v1, v2 and v3 in G such that the distance d(ui,v j)≥

3 (1 ≤ i, j ≤ 3), then G is maximally 4-restricted edge-connected.

Proof: We suppose, on the contrary, that G is not maximally 4-restricted edge-connected.

Let S = [X ,Y ] be a λ4-cut of G. Denote X1 = {x ∈ X : N(x)∩Y ̸= /0} and Y1 = {y ∈ Y :

N(y)∩X ̸= /0}. Let X0 = X \X1, Y0 = Y \Y1, and let m0 = |X0|, m1 = |X1|, n0 = |Y0| and

n1 = |Y1|. If |X | = 4 or |Y | = 4, then λ4(G) ≤ ξ4(G) ≤ |S| = λ4(G), i.e., G is maximally

4-restricted edge-connected, a contradiction. Therefore |X | ≥ 5 and |Y | ≥ 5.

Claim 1. m0 ≥ 2 and n0 ≥ 2.

We prove this Claim by contradiction. Without loss of generality, assume m0 ≤ 1. Let

m0 = 0. By the theorems in [76], there is a connected subgraph H of order 4 such that

X0 ⊆V (H) in G[X ]. Let m0 = 1 and X0 = {x}. Since G[X ] is connected, there is a spanning

tree T in G[X ]. Therefore x ∈V (T ). Since T has two vertices of degree 1, there is a vertex v

of degree 1 such that v ̸= x. Then T − v is a tree and x ∈V (T − v). Since there is a vertex

v2 of degree 1 such that v2 ̸= x, T − v− v2 is a tree and x ∈V (T − v− v2). Continuing this

process, we can obtain a tree T ′ of order 4 such that x ∈ V (T ′). Let H = (G[X ])[V (T ′)].

Therefore, in G[X ], there is a connected subgraph H of order 4 such that X0 ⊆ V (H). Let
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u ∈ X\V (H). Then |[{u},Y ]| ≥ 1. Since |V (T ′)|= 4, the maximum cardinality of paths is

less than or equal to 3. Since g(G)≥ 8, |[{u},V (H)]| ≤ 1 holds. Therefore, we have that

∑
u∈X\V (H)

|N(u)∩V (H)| = |[X\V (H),V (H)]|

≤ |X\V (H)|

≤ |[X\V (H),Y ]|

= ∑
u∈X\V (H)

|N(u)∩Y |. (4.1)

By Lemma 4.2.1, G is maximally 4-restricted edge-connected, a contradiction. Therefore

m0 ≥ 2. Similarly, we have n0 ≥ 2. The proof of Claim 1 is completed.

Claim 2. m0 = 2 or n0 = 2.

Suppose that m0 ≥ 3 and n0 ≥ 3. Then there are six vertices u1, u2, u3, v1, v2 and v3 in

G such that u1,u2,u3 ∈ X0 and v1,v2,v3 ∈ Y0. By the definition of X0 and Y0, we have that

|N(ui)∩Y | = 0 = |N(v j)∩X | for 1 ≤ i ≤ 3;1 ≤ j ≤ 3. It follows that d(ui,v j) ≥ 3 (i, j ∈

{1,2,3}), a contradiction. Combining this with Claim 1, we have that m0 = 2 or n0 = 2. The

proof of Claim 2 is completed.

Claim 3. In G[X ], let H be a connected subgraph of order 4 such that it contains X0 as

most as possible and let V (H) = {x1,x2,x3,x4} . If X0 = {u1,u2}, then

(1) |X0 ∩V (H)|= 1;

(2) H = u1x2x3x4 is a path of length 3, where u1 = x1, if u1 ∈V (H); and u1x2x3x4u2 is a path

of length 4 in G[X ];

(3) (N(u1)∩X)\V (H) = /0 and (N(u2)∩X)\V (H) = /0.

Since |X0|= 2, 1 ≤ |X0 ∩V (H)| ≤ 2 holds. We consider the following two cases.

Case 1. |X0 ∩V (H)|= 2.
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Since g(G) ≥ 8, |[{u},V (H)]| ≤ 1 for u ∈ X\V (H). Note that X0 = {u1,u2} ⊆ V (H).

Then |[{u},Y ]| ≥ 1 for u ∈ X\V (H). By (2.1), we have that

∑
u∈X\V (H)

|N(u)∩V (H)| ≤ ∑
u∈X\V (H)

|N(u)∩Y |.

By Lemma 4.2.1, G is maximally 4-restricted edge-connected, a contradiction.

Case 2. |X0 ∩V (H)|= 1.

In this case, suppose u1 ∈V (H). Since g(G)≥ 8, H is a tree of order 4, and |[{u},V (H)]| ≤

1 for u ∈ X\V (H). If |N(u2)∩V (H)| = 0, then |[{u},V (H)]| ≤ |[{u},Y ]| for u ∈ X\V (H).

Therefore, we have that

∑
u∈X\V (H)

|N(u)∩V (H)| ≤ ∑
u∈X\V (H)

|N(u)∩Y |.

By Lemma 4.2.1, G is maximally 4-restricted edge-connected, a contradiction. Then |N(u2)∩

V (H)|= 1. Suppose that H is not a path. Then H has at least three vertices of degree 1. Let

u2 be adjacent to a vertex y of H. Then there is a vertex v of degree 1 such that v ̸= u1 and y

in H. Therefore, (G[X ])[V (H − v)∪{u2}] is a connected graph of order 4, a contradiction to

the order of H. Then H is a path P of length 3. If u1 is not a vertex of degree 1, then there is a

connected subgraph of order 4 such that it contains u1,u2 in G[V (H)∪{u2}], a contradiction

to the order of H. Therefore u1 is a vertex of degree 1 in P. Let P = u1x2x3x4. Suppose that

N(u2)∩V (H) = /0. Then |[{u},V (H)]| ≤ |[{u},Y ]| for u ∈ X\V (H). Therefore, we have that

∑
u∈X\V (H)

|N(u)∩V (H)| ≤ ∑
u∈X\V (H)

|N(u)∩Y |.

By Lemma 4.2.1, G is maximally 4-restricted edge-connected, a contradiction. Therefore,

|N(u2)∩V (H)| = 1. If N(u2)∩{x2,x3} ̸= /0, a contradiction to the order of H. Then u2 is

adjacent to x4.

Suppose, on the contrary, that x ∈ (N(u1)∩X)\V (H). Then P′ = xu1x2x3 is a path of

length 3 in G[X ]. Since g(G)≥ 8, |N(u)∩V (P′)| ≤ 1 for u ∈ X\V (P′). If N(u2)∩V (P′) ̸= /0,

then there is a connected subgraph H ′ of order 4 in G[X ] with u1,u2 ∈V (H ′), a contradiction
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to that |X0 ∩V (H)|= 1. Therefore, we have that |N(u2)∩V (P′)|= 0 and |N(u)∩V (P′)| ≤

|N(u)∩Y | for u ∈ X\V (P′). Thus,

∑
u∈X\V (P′)

|N(u)∩V (P′)| ≤ ∑
u∈X\V (P′)

|N(u)∩Y |.

By Lemma 4.2.1, G is maximally 4-restricted edge-connected, a contradiction. So (N(u1)∩

X)\V (H) = /0 and d(u1) = 1 in G[X ].

Suppose, on the contrary, that x ∈ (N(u2)∩X)\V (H). By Claim 3 (2), P′ = x3x4u2x

is a path of length 3 in G[X ]. Since g(G) ≥ 8, |N(u)∩V (P′)| ≤ 1 for u ∈ X\V (P′). Since

d(u1) = 1 in G[X ] and u1x2 ∈ E(G[Y ]), we have N(u1)∩V (P′) = /0. Therefore, we have that

|N(u)∩V (P′)| ≤ |N(u)∩Y | for u ∈ X\V (P′). Thus,

∑
u∈X\V (P′)

|N(u)∩V (P′)| ≤ ∑
u∈X\V (P′)

|N(u)∩Y |.

By Lemma 4.2.1, G is maximally 4-restricted edge-connected, a contradiction. So (N(u2)∩

X)\V (H) = /0. The proof of Claim 3 is completed.

Similarly to Claim 3, we have that the following claim.

Claim 4. In G[Y ], let H∗ be a connected subgraph of order 4 such that it contains Y0 as

much as possible and let V (H∗) = {y1,y2,y3,y4} . If Y0 = {v1,v2}, then

(1) |Y0 ∩V (H∗)|= 1;

(2) H∗ = v1y2y3y4 is a path of length 3, where v1 = y1, if v1 ∈ V (H∗); and v1y2y3y4v2 is a

path of length 4 in G[Y ];

(3) (N(v1)∩Y )\V (H∗) = /0 and (N(v2)∩Y )\V (H∗) = /0.

Without loss of generality, suppose m0 = 2. We consider the following cases.

Case 1. n0 = 2.

Claim 5. |[{x2,x3,x4},{y2,y3,y4}]| ≤ 1 in G (See Fig. 4.1).

Suppose |[{x2,x3,x4},{y2,y3,y4}]| ≥ 2. It is sufficient to show that |[{x2,x3,x4},{y2,

y3,y4}]|= 2. Since x2x3x4 and y2y3y4 are paths, and |[{x2,x3,x4},{y2,y3,y4}]|= 2, we have
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that there is a cycle of G whose length is at most 6, a contradiction to g(G)≥ 8. The proof

of Claim 5 is completed.

Suppose, firstly, that |[{x2,x3,x4},{y2,y3,y4}]| = 1 and xi0y j0 ∈ E(G) (2 ≤ i0 ≤ 4,2 ≤

j0 ≤ 4). Let xi ∈ {2,3,4}\{i0} with xixi0 ∈ E(H) and y j ∈ {2,3,4}\{ j0} with y jy j0 ∈ E(H∗).

By Claim 5, d(xi,y j) ̸= 1. If d(xi,y j) = 2, then there is a vertex y in G[Y ] such that xiy,yy j ∈

E(G) or there is a vertex x in G[X ] such that xix,xy j ∈ E(G). Without loss of generality,

suppose that there is a vertex y in G[Y ] such that xiy,yy j ∈ E(G). Then there is a cycle C in G,

and xi0,y j0,xi,y j,y ∈V (C) and the length of C is 5, a contradiction to g(G)≥ 8. Therefore,

d(xi,y j)≥ 3. By Claim 4 (3), d(xi,vi)≥ 3 for {1,2}. Similarly to the discussion on xi, we

have that d(y j,uk)≥ 3 for k ∈ {1,2}. Therefore we have d(x,y)≥ 3 for every x ∈ {u1,u2,xi}

and y ∈ {v1,v2,y j}, a contradiction.

Suppose, secondly, that |[{x2,x3,x4},{y2,y3,y4}]| = 0. Since there is no d(x,y) ≥ 3

for every x ∈ {x2,x3,x4} and y ∈ {y2,y3,y4}, there are two vertices xi0 ∈ {x2,x3,x4} and

y j0 ∈ {y2,y3,y4} such that d(xi0,y j0) = 2. Let i ∈ {2,3,4}\{i0} with xixi0 ∈ E(H) and

j ∈ {2,3,4}\{ j0} with y jy j0 ∈ E(H∗). Since g(G) ≥ 8, d(xi,y j) ≥ 3 holds. By Claim 4

(3), d(xi,v j) ≥ 3 for j ∈ {1,2}. Similarly, d(y j,ui) ≥ 3 for i ∈ {1,2}. Therefore we have

d(x,y)≥ 3 for every x ∈ {u1,u2,xi} and y ∈ {v1,v2,y j}, a contradiction.

Case 2. n0 ≥ 3.

Let Y0 = {y0,v1,v2,v3, . . .}. By Claim 3 (2), we have that H = u1x2x3x4 and u1x2x3x4u2

is a path in G[X ]. Since g(G) ≥ 8, we have |N(v)∩V (H∗)| ≤ 1 for v ∈ Y\V (H∗). If

|N(y)∩V (H∗)|= 0 for y ∈ Y0\V (H∗), by Lemma 4.2.1, G is maximally 4-restricted edge-

connected, a contradiction. Therefore, there is at least a vertex y0 in Y0\V (H∗) such that

|N(y0)∩V (H∗)|= 1.

Case 2.1. |Y0 ∩V (H∗)|= 1.

Let Y0 ∩V (H∗) = {v1}. Note that H∗ is a path of length 3 or a K1,3. Similarly to the

discussion on H, we have that G[V (H∗)∪ {y0}] is a path of length 4, denoted by P1 =

y1y2y3y4y5, where v1 = y1,y5 = y0. Similarly to Case 1, there is a contradiction.

Case 2.2. |Y0 ∩V (H∗)|= 2.
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Let Y0 ∩V (H∗) = {v1,v2}. Since H∗ is a path of length 3 or a K1,3, we have that

1 ≤ dH∗(v1,v2)≤ 3.

Case 2.2.a. dH∗(v1,v2) = 3.

In this case, H∗ is a path of length 3, denoted by H∗ = y1y2y3y4, where v1 = y1,v2 = y4.

Similarly to the proof of Claim 5, we have the following claim.

Claim 6. |[{x2,x3,x4},{y2,y3}]| ≤ 1 in G (See Fig. 4.2).

Suppose, firstly, that |[{x2,x3,x4},{y2,y3}]|= 1 Without loss of generality, we consider

the following cases.

Case 2.2.a.1. x2y2 ∈ E(G).

In this case, x3x2y2y3 is a path in G. Since g(G) ≥ 8 and Claim 6, d(x3,y3) = 3 holds.

Assume d(x3,v1) = 2. Since N(v1)∩X = /0, there is a vertex y in G[Y ] such that x3y,yv1 ∈

E(G). Thus, x3yv1y2x2x3 is a 5-cycle in G, a contradiction to that g(G) ≥ 8. Therefore,

d(x3,v1) = 3. Similarly, d(x3,v2) ≥ 3. By Claim 3, d(y3,ui) ≥ 3 for i ∈ {1,2}. Therefore

we have d(x,y)≥ 3 for every x ∈ {u1,u2,x3} and y ∈ {v1,v2,y3}, a contradiction.

Case 2.2.a.2. x3y2 ∈ E(G).

In this case, x2x3y2y3 is a path in G. By Claim 6, x2y3 /∈ E(G). If d(x2,y3) = 2, then

there is a vertex y in G[Y ] such that x2y,yy3 ∈ E(G) or there is a vertex x in G[X ] such that

x2x,xy3 ∈ E(G). Without loss of generality, suppose that there is a vertex y in G[Y ] such that

x2y,yy3 ∈ E(G). Note that x3y2y3yx2x3 is a 5-cycle in G, a contradiction to that g(G) ≥ 8.

Therefore, d(x2,y3) = 3. Assume d(x2,v1) = 2. Since N(v1)∩X = /0, there is a vertex y

in G[Y ] such that x2y,yv1 ∈ E(G). Thus, x2yv1y2x3x2 is a 5-cycle in G, a contradiction to

that g(G)≥ 8. Therefore, d(x2,v1) = 3. Assume d(x2,v2) = 2. Since N(v2)∩X = /0, there

is a vertex y in G[Y ] such that x2y,yv2 ∈ E(G). Thus, x2yv2y3y2x3x2 is a 6-cycle in G, a

contradiction to that g(G) ≥ 8. Therefore, d(x2,v2) ≥ 3. By Claim 3, d(y3,ui) ≥ 3 for

i ∈ {1,2}. Therefore we have d(x,y) ≥ 3 for every x ∈ {u1,u2,x2} and y ∈ {v1,v2,y3}, a

contradiction.

Suppose, secondly, that |[{x2,x3,x4},{y2,y3}]| = 0. Assume d(x,y) ≥ 3 for every x ∈

{x2,x3,x4} and y ∈ {y2,y3}. If d(xi0,v1) = 2 for xi0 ∈ {x2,x3,x4}, then d(xi,v1) ≥ 3 for

i ∈ {2,3,4}\{i0} by g(G) ≥ 8. Therefore we have d(x,y) ≥ 3 for every x ∈ {u1,u2,xi}
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and y ∈ {v1,y1,y2}, a contradiction. Then there are two vertices xi0 ∈ {x2,x3,x4} and

y j0 ∈ {y2,y3} such that d(xi0,y j0) = 2. Let i ∈ {2,3,4}\{i0} with xixi0 ∈ E(H), and j ∈

{2,3}\{ j0} with y jy j0 ∈ E(H∗). Since g(G)≥ 8, d(xi,y j)≥ 3 holds. Since d(xi0,y j0) = 2,

d(xi,v j)≥ 3 for j ∈ {1,2} by g(G)≥ 8. By Claim 3, d(y j,ui)≥ 3 for i ∈ {1,2}. Therefore

we have d(x,y)≥ 3 for every x ∈ {u1,u2,xi} and y ∈ {v1,v2,y j}, a contradiction.

Case 2.2.b. dH∗(v1,v2) = 2.

Suppose, firstly, that H∗ ∼= K1,3, where V (H∗) = {v1,v2,y1,y2} and dH∗(y2) = 3. Since

g(G) ≥ 8, we have |N(v)∩V (H∗)| ≤ 1 for v ∈ Y\V (H∗). If |N(y)∩V (H∗)| = 0 for y ∈

Y0\V (H∗), by Lemma 4.2.1, G is maximally 4-restricted edge-connected, a contradiction.

Therefore, there is at least a vertex y0 in Y0\V (H∗) such that |N(y0)∩V (H∗)|= 1. If y0 is

adjacent to vi (i ∈ {1,2}), then (G[Y ])[{v1,v2,y0,y2}] is a connected subgraph of order 4, a

contradiction to the definition of H∗. If y0 is adjacent to y2, then (G[Y ])[{v1,v2,y0,y2}] is

a connected subgraph of order 4, a contradiction to the definition of H∗. Therefore, y0 is

adjacent to y1 (See Fig. 4.3). Similarly to the proof of Claim 5, we have the following claim.

Claim 7. |[{x2,x3,x4},{y1,y2}]| ≤ 1 in G.

Suppose, firstly, that |[{x2,x3,x4},{y1,y2}]| = 1 and xi0y j0 is an edge in G, where i0 ∈

{2,3,4} and j0 ∈ {2,3}. Without loss of generality, we consider the following cases.

Case 2.2.b.1. x2y2 ∈ E(G).

If d(x3,vi) = 2 for 1 ≤ i ≤ 2 or d(x3,y0) = 2, then there is a vertex y in G[Y ] such that

x3y,yvi ∈ E(G) or x3y,yy0 ∈ E(G). Thus, there is a at most 6-cycle in G, a contradiction to

that g(G)≥ 8. Therefore, d(x3,vi)≥ 3 and d(x3,y0)≥ 3. Therefore we have d(x,y)≥ 3 for

every x ∈ {u1,u2,x3} and y ∈ {v1,v2,y0}, a contradiction.

Case 2.2.b.2. x2y1 ∈ E(G).

The proof of this case is similar to Case 2.2.b.1.

Case 2.2.b.3. x3y2 ∈ E(G).

If d(x2,vi) = 2 for 1 ≤ i ≤ 2 or d(x2,y0) = 2 , then there is a vertex y in G[Y ] such that

x2y,yvi ∈ E(G) or x2y,yy0 ∈ E(G). Thus, there is a at most 6-cycle in G, a contradiction to

that g(G)≥ 8. Therefore, d(x2,vi)≥ 3 and d(x2,y0)≥ 3. Therefore we have d(x,y)≥ 3 for

every x ∈ {u1,u2,x2} and y ∈ {v1,v2,y0}, a contradiction.
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Case 2.2.b.4. x3y1 ∈ E(G).

The proof of this case is similar to Case 2.2.b.3.

Suppose, secondly, that |[{x2,x3,x4},{y1,y2}]| = 0. Assume d(x,y) ≥ 3 for every x ∈

{x2,x3,x4} and y ∈ {y1,y2}. If d(xi0,v1) = 2 for 2 ≤ i0 ≤ 4, then d(xi,v1) ≥ 3 for i ∈

{2,3,4}\{i0} by g(G)≥ 8. Therefore we have d(x,y)≥ 3 for every x ∈ {u1,u2,xi} and y ∈

{v1,y1,y2}, a contradiction. Then there are two vertices xi0 ∈ {x2,x3,x4} and y j0 ∈ {y2,y3}

such that d(xi0,y j0) = 2. Let i ∈ {2,3,4}\{i0} with xixi0 ∈ E(H), and j ∈ {2,3}\{ j0} with

y jy j0 ∈ E(H∗). Since g(G) ≥ 8, d(xi,y j) ≥ 3 holds. Since d(xi0,y j0) = 2, d(xi,v j) ≥ 3

for j ∈ {1,2} by g(G) ≥ 8. By Claim 3, d(y j,ui) ≥ 3 for i ∈ {1,2}. Therefore we have

d(x,y)≥ 3 for every x ∈ {u1,u2,xi} and y ∈ {v1,v2,y j}, a contradiction.

Suppose, secondly, that H∗ is a path of length 3, denoted H∗ = y1y2y3y4. Without loss of

generality, suppose v1 = y1,v2 = y3.

Since g(G)≥ 8, we have |N(v)∩V (H∗)| ≤ 1 for v ∈Y\V (H∗). If |N(y)∩V (H∗)|= 0 for

y ∈Y0\V (H∗), by Lemma 4.2.1, G is maximally 4-restricted edge-connected, a contradiction.

Therefore, there is at least a vertex y0 in Y0\V (H∗) such that |N(y0)∩V (H∗)|= 1. If y0 is

adjacent to vi (i ∈ {1,2}), then (G[Y ])[{v1,v2,y0,y2}] is a connected subgraph of order 4, a

contradiction to the definition of H∗. If y0 is adjacent to y2, then (G[Y ])[{v1,v2,y0,y2}] is

a connected subgraph of order 4, a contradiction to the definition of H∗. Therefore, y0 is

adjacent to y4 (See Fig. 4.4). Similarly to the proof of Claim 5, we have the following claim.

Claim 8. |[{x2,x3,x4},{y2,y4}]| ≤ 1 in G.

Suppose, firstly, that |[{x2,x3,x4},{y2,y4}]|= 1 Without loss of generality, we consider

the following cases.

Case 2.2.b.5. x2y2 ∈ E(G).

Assume d(x3,v j0) = 2 for v j0 ∈ {v1,v2,y0}. Since N(vi)∩X = /0 and N(y0)∩X = /0,

there is a vertex y in G[Y ] such that x3y,yvi(y0) ∈ E(G). Thus, there is a cycle C in G whose

length of C is at most 7, a contradiction to that g(G) ≥ 8. Therefore, d(x3,v j) ≥ 3 and

d(x3,y0)≥ 3. Therefore we have d(x,y)≥ 3 for every x ∈ {u1,u2,x3} and y ∈ {v1,v2,y0}, a

contradiction.

Case 2.2.b.6. x3y2 ∈ E(G).
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Similarly, we have d(x,y)≥ 3 for every x ∈ {u1,u2,x2} and y ∈ {v1,v2,y0}, a contradic-

tion.

Suppose, secondly, that |[{x2,x3,x4},{y2,y4}]|= 0.

Assume d(x,y) ≥ 3 for every x ∈ {x2,x3,x4} and y ∈ {y2,y4}. Since g(G) ≥ 8, there

is one xi of x2,x3 such that d(xi,v1) ≥ 3. Therefore, by Claim 3, we have d(x,y) ≥ 3

for every x ∈ {u1,u2,xi} and y ∈ {v1,y2,y4}, a contradiction. Then there are two vertices

xi0 ∈ {x2,x3,x4} and y j0 ∈ {y2,y3} such that d(xi0,y j0) = 2. Let xi0xi ∈ E(H). Without loss

of generality, we consider the following cases.

Case 2.2.b.7. d(xi0 ,y2) = 2.

Since g(G)≥ 8, d(xi,v j)≥ 3 for j ∈ {1,2} and d(xi,y4)≥ 3 hold. Therefore, by Claim

3, we have d(x,y)≥ 3 for every x ∈ {u1,u2,xi} and y ∈ {v1,v2,y4}, a contradiction.

Case 2.2.b.8. d(xi0 ,y4) = 2.

Similarly, we have d(x,y)≥ 3 for every x ∈ {u1,u2,xi} and y ∈ {v2,y0,y2}, a contradic-

tion.

Case 2.2.c. dH∗(v1,v2) = 1.

Suppose, firstly, that H∗ is a path of length 3, denoted by P3 = y1y2y3y4. If v1 = y1,v2 = y2,

then N(y0)∩V (H∗) = {y4}. Otherwise, there is a connected subgraph G∗ of order 4 in

G[V (H∗)∪{y0}] such that v1,v2,y0 ∈V (G∗), a contradiction to the definition of H∗. Since

dH∗(v2,y0) = 3, Similarly to Case 2.2.a, we have that there are six vertices x1, x2, x3, z1, z2

and z3 in G such that the distance d(xi,z j)≥ 3 (1 ≤ i, j ≤ 3), a contradiction.

Suppose that H∗ ∼= K1,3, where dH∗(v1) = 3. Then there is a connected subgraph G∗ of

order 4 in G[V (H∗)∪{y0}] such that v1,v2,y0 ∈V (G∗), a contradiction to the definition of

H∗.

Case 2.3. |Y0 ∩V (H∗)|= 3.

Let Y0 = {v1,v2,v3, . . .}. Suppose that n0 = 3. Since g(G) ≥ 8, |[{y},V (H∗)]| ≤ 1 for

y ∈ Y\V (H∗). Since Y0 ⊆V (H∗), we have that
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∑
y∈Y\V (H∗)

|N(y)∩V (H∗)| = |[Y\V (H∗),V (H∗)]|

≤ |Y\V (H∗)|

≤ |[Y\V (H∗),X ]|

= ∑
y∈Y\V (H∗)

|N(y)∩X |. (4.2)

By Lemma 4.2.1, G is maximally 4-restricted edge-connected, a contradiction. Then n0 ≥ 4.

Suppose that v1,v2,v3 ∈ Y0 ∩V (H∗). Since H∗ is a path of length 3 or a K1,3, there is at least

a vertex of degree 1 in v1,v2,v3. Without loss of generality, suppose dH∗(v1) = 1 and v1 = y1.

Case 2.3.1. H∗ = y1y2y3y4 is a path of length 3.

Since |Y0 ∩V (H∗)| = 3, we have that H∗ = v1v2v3y4 (See Fig. 4.5) or H∗ = v1v2y3v3.

We consider the following cases.

Case 2.3.1.1. H∗ = v1v2v3y4.

Since g(G)≥ 8, we have the following claim.

Claim 9. |[{x2,x3,x4},{y4}]| ≤ 1 in G.

Suppose, firstly, that |[{x2,x3,x4},{y4}]|= 1 and xi0y4 ∈ E(G) for xi0 ∈ {x2,x3,x4}. Let

xixi0 ∈ E(H). Since g(G) ≥ 8, we have d(xi,v j) ≥ 3 for j ∈ {1,2,3}. Therefore we have

d(x,y)≥ 3 for every x ∈ {u1,u2,xi} and y ∈ {v1,v2,v3}, a contradiction.

Suppose, secondly, that |[{x2,x3,x4},{y4}]|= 0.

Since there is no d(xi,v j) ≥ 3 for every i ∈ {2,3,4} and every j ∈ {1,2,3}, there is

one d(xi0,v j0) = 2 for i0 ∈ {2,3,4} and j0 ∈ {1,2,3}. Let xixi0 ∈ E(H). Since g(G) ≥ 8,

d(xi,v j)≥ 3 for every j ∈ {1,2,3}. Therefore we have d(x,y)≥ 3 for every x ∈ {u1,u2,xi}

and y ∈ {v1,v2,v3}, a contradiction.

Case 2.3.1.2. H∗ = v1v2y3v3.

Similarly to Case 2.3.1.1, we have that there are six vertices u1, u2, u3, v1, v2 and v3 in G

such that the distance d(ui,v j)≥ 3 (1 ≤ i, j ≤ 3), a contradiction.

Case 2.3.2. H∗ ∼= K1,3.
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Let d(y2) = 3 in H∗. Since |Y0 ∩V (H∗)|= 3, we have that y2 = v2 and y2 ̸= v2 or v3 or

v3. Similarly to Case 2.3.1, we have that there are six vertices u1, u2, u3, v1, v2 and v3 in G

such that the distance d(ui,v j)≥ 3 (1 ≤ i, j ≤ 3), a contradiction.

Case 2.4. |Y0 ∩V (H∗)| ≥ 4.

If d(xi,v j)≥ 3 for every i ∈ {2,3,4} and every j ∈ {1,2,3,4}, then there are six vertices

u1, u2, x3, v1, v2 and v3 in G such that the distance d(ui,v j)≥ 3 (i, j ∈ {1,2,3}), a contradic-

tion. Then d(xi0,v j0) = 2 for i0 ∈ {2,3,4} and j0 ∈ {1,2,3,4}. Since g(G)≥ 8, d(xi0,v j)≥ 3

for every j ∈ {1,2,3,4}\{ j0}. Therefore we have d(x,y)≥ 3 for every x ∈ {u1,u2,xi0} and

y ∈ {v j : j ∈ {1,2,3,4}\{ j0}}, a contradiction.

From Cases 1 and 2, we have that G is maximally 4-restricted edge-connected. 2

Fig. 4.1 The structure of G[X ] and G[Y ] in Claim 5 of Theorem 4.2.2

4.3 Conclusion

In this chapter, we showed a sufficient condition for graphs to be maximally 4-restricted

edge-connected, i.e., if G is a λ4-connected graph with λ4(G)≤ ξ4(G) and the girth g(G)≥ 8,

and there are not six vertices u1, u2, u3, v1, v2 and v3 in G such that the distance d(ui,v j)≥ 3

for 1 ≤ i, j ≤ 3, then G is maximally 4-restricted edge-connected. Our future work along this

direction is to investigate the problem of the maximally k-restricted edge-connected graph.
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Fig. 4.2 The structure of G[X ] and G[Y ] in Claim 6 of Theorem 4.2.2

Fig. 4.3 The structure of G[X ] and G[Y ] in Case 2.2.b of Theorem 4.2.2

Fig. 4.4 The structure of G[X ] and G[Y ] in Case 2.2.b.4 of Theorem 4.2.2
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Fig. 4.5 The structure of G[X ] and G[Y ] in Case 2.3.1 of Theorem 4.2.2



Chapter 5

Nature Diagnosability of Cayley Graphs

Generated by Transposition Trees under

the PMC Model & MM∗ Model

In this chapter, we show that the nature diagnosability of CΓn under the PMC model and

MM∗ model is 2n−3 except the Bubble-sort graph B4 under MM∗ model, where n ≥ 4, and

the nature diagnosability of B4 under the MM∗ model is 4. The results presented in this

chapter is published in International Journal of Computer Mathematics [83].

5.1 Cayley Graphs Generated by Transposition Trees

In chapter 2, we give the definition of CΓn and it is easy to see that CΓn is a (n−1)-regular

graph on n! vertices. Recently CΓn as an interconnection network model received much

attention, see [19–21, 48, 53, 78, 81, 108] for details.

From the definition of CΓn and the basic property of Cayley graphs as discussed in

chapter 3, we have the following theorem.

Theorem 5.1.1 ([108]) CΓn is vertex-transitive and bipartite.
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Here we give a theorem in Group Theory together with Theorem 5.1.1 for proving the

Proposition 5.1.1.

Theorem 5.1.2 ([46]) Every non-identity permutation in the symmetric group is uniquely

(up to the order of the factors) a product of disjoint cycles, each of which has length at least

2.

As we defined in chapter 2, Star graphs are Cayley graphs CΓn generated by transposition

tree. For every two transpositions in the transposition simple graph of a Star graph, they

are not disjoint, it is obvious that the girth of Star graph is 4. However, there exists 4-cycle

in CΓn if there exists one pair of disjoint transpositions in the corresponding transposition

simple graph. This leads to the difference of the results in the following two Propositions.

Proposition 5.1.1 ([116]) Let CΓn be the Star graph. If two vertices are adjacent, there is

no common neighbor vertex of these two vertices, i.e., |N(u)∩N(v)| = 0. If two vertices

are not adjacent, there is at most one common neighbor vertex of these two vertices, i.e.,

|N(u)∩N(v)| ≤ 1.

Proposition 5.1.2 If CΓn is not Star graph and two vertices u,v are adjacent, there is no

common neighbor vertex of these two vertices, i.e., |N(u)∩N(v)|= 0. If two vertices u,v

are not adjacent, there are at most two common neighbors vertex of these two vertices, i.e.,

|N(u)∩N(v)| ≤ 2.

Proof: In this proof, a permutation is denoted by a product of disjoint cycles. The two

cases can be proved by contradiction. For case (1), if two vertices are adjacent and they have

a common neighbor vertex, these 3 vertices will form a cycle of length 3. It is a contradiction

to Theorem 5.1.1 that there are no odd cycles in a bipartite graph CΓn. For case (2), let two

vertices be not adjacent. Suppose, on the contrary, that |N(u)∩N(v)| ≥ 3. By Theorem 5.1.1,

without loss of generality, assume that u = (1), i.e., u is the identity vertex. Then v /∈ E(Γn).

It is sufficient to suppose that {(ia),( jb),(kc)} ⊆ E(Γn), {(ia),( jb),(kc)} ⊆ N(u)∩N(v)

and |{(ia),( jb),(kc)}| = 3. Since CΓn is not the Star graph, the girth of CΓn is 4. Since

u,(ia),v,( jb),u is a cycle of length 4, we have that v = (ia)( jb) and (ia) is disjoint to ( jb).
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Since u,(ia),v,(kc),u is also a cycle of length 4, we have that v = (ia)(kc) and (ia) is disjoint

to (kc). By Theorem 5.1.2, v = (ia)( jb) = (ia)(kc). Thus, ( jb) = (kc), a contradiction to

the fact that |{(ia),( jb),(kc)}|= 3. Therefore, |N(u)∩N(v)| ≤ 2. The proof is complete. 2

In order to determine the R1-connectivity of CΓn, we divide CΓn into two parts, one is a

Star graph and the other is not a Star graph.

Lemma 5.1.3 ([81]) For n ≥ 3, if CΓn is a Star graph, then the R1-connectivity of CΓn is

2n−4, i.e., κ∗(CΓn) = 2n−4.

Since the R1-connectivity of Star graph is already determined by Lemma 5.1.3, we only

need to determine the R1-connectivity of CΓn by using Proposition 5.1.2, where CΓn is not a

Star graph.

Lemma 5.1.4 For n ≥ 3, the R1-connectivity of CΓn is 2n−4, i.e., κ∗(CΓn) = 2n−4.

Proof: By Lemma 5.1.3, κ∗(CΓn) = 2n−4 if CΓn is a Star graph. Thus, suppose that CΓn

is not a Star graph and n ≥ 4. Then the girth of CΓn is 4. By Theorem 2.4.3, let (12) ∈ E(Γn)

and A = {(1),(12)}. Then CΓn[A] = K2. Since CΓn has no 3-cycles, |NCΓn(A)| = 2n− 4.

Let F1 = NCΓn(A) and F2 = A∪NCΓn(A).

In F1, we find at most two vertices adjacent to one vertex x in Sn \F2.

Claim 1. For any x ∈ Sn \F2, |NCΓn(x)∩F2)| ≤ 2.

Let (ki),(l j) ∈ E(Γn), where 3 ≤ i, j ≤ n. Since CΓn is a bipartite graph, there is no

5-cycle (1),(ki),x,(12)(l j),(12),(1) of CΓn. Note that CΓn−F1 has two parts CΓn−F2 and

CΓ2 (for convenience). Since F1 = NCΓn(A), x is not adjacent to each of V (CΓ2) = A. By

Proposition 5.1.2, |NCΓn(x)∩F2)| ≤ 2 for any x ∈ Sn \F2.

By Claim 1, δ (CΓn −F2)≥ n−1−2 = n−3 ≥ 1, since n ≥ 4 by assumption. CΓn −F1

has two parts CΓn −F2 and CΓ2 = K2 (for convenience). Note that δ (CΓ2) = 1. Therefore,

δ (CΓn −F1)≥ 1 for n ≥ 4. Thus, F1 is a nature cut. Thus, κ1(CΓn)≤ 2n−4.

Let F be a subset of Sn such that |F | ≤ 2n−5.

Claim 2. F is not a nature cut of CΓn.
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This Claim is shown by induction on n. |F | ≤ 2n− 5 = 2× 3− 5 = 1 when n = 3.

Since CΓ3 is a 6-cycle, CΓ3 −F is connected. Assume that CΓn−1 −F is connected when

|F | ≤ 2(n−1)−5. Let |F | ≤ 2n−5 in the following paragraphs.

By Theorem 2.4.3, a transposition tree Γn can be labelled properly. We assume that

one vertex of degree one is labelled by n in Γn, where n ≥ 4. We decompose Cay(Γn,Sn)

along the last position, denoted by Hi (i = 1,2, . . . ,n). Then Hi and Cay(Γn −n,Sn−1) are

isomorphic. The edges whose end vertices in different Hi’s are the cross-edges with respect to

the given decomposition. We note that each vertex is incident to exactly one cross-edge and

there are (n−2)! independent cross-edges between two different Hi’s. Let Fi = F ∩V (Hi).

We consider the following cases.

Case 1. |Fi| ≤ 2(n−1)−5 = 2n−7.

In this case, Hi −Fi is connected. Since there are (n− 2)! independent cross-edges

between two different Hi’s and (n−2)! > 2n−7 as n ≥ 4, CΓn −F is connected.

Case 2. |F1|= 2n−6.

In this case, |Fi| ≤ 1 (i = 2,3, . . . ,n). Since |F1| = 2n− 6, let F1 be a nature cut of H1.

Since each component of H1 −F1 has at least two vertices and each of them has two outside

neighbors, there is a vertex adjacent to one of Hi (i = 2,3, . . . ,n). Therefore, CΓn −F is

connected.

Case 3. |F1|= 2n−5.

In this case, |Fi| = 0 (i = 2,3, . . . ,n). Each vertex of H1 −F1 is adjacent to one of Hi

(i = 2,3, . . . ,n). Therefore, CΓn −F is connected. The proof of Claim 2 is completed.

Therefore, κ∗(CΓn) = 2n−4. 2

Now we determined the R1-connectivity of CΓn, which is a indispensable part in proof to

determine the nature diagnosability of CΓn under PMC Model or MM∗, where n ≥ 3.
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5.2 The Nature Diagnosability of Cayley Graphs Gener-

ated by Transpositions Trees under the PMC Model

In this section, we will obtain the nature diagnosability of the Cayley graph CΓn generated

by the transposition tree Γn under the PMC model.

Firstly we give the necessary and sufficient condition of that a system (graph) G is

g-good-neighbor t-diagnosable under PMC model.

Theorem 5.2.1 ([112]) A system G = (V,E) is g-good-neighbor t-diagnosable under the

PMC model if and only if there is an edge uv ∈ E with u ∈V\(F1 ∪F2) and v ∈ F1 △ F2 for

each distinct pair of g-good-neighbor faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t

(See Fig. 5.4).

Secondly, as we defined the nature faulty set and nature diagnosability and in chapter 2,

it is straightforward to obtain the following theorem.

Theorem 5.2.2 A system G = (V,E) is nature t-diagnosable under the PMC model if and

only if there is an edge uv ∈ E with u ∈V\(F1 ∪F2) and v ∈ F1 △ F2 for each distinct pair of

nature faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t (See Fig. 5.4).

Fig. 5.1 Illustration of a distinguishable pair (F1,F2) under the PMC model

Secondly, we derive an important lemma which will be used in the proof to determine the

nature diagnosability of CΓn under PMC Model, where n ≥ 4.

Lemma 5.2.3 Let A = {(1),(12)} and CΓn be defined as above. If n ≥ 4, F1 = NCΓn(A),

F2 = A∪NCΓn(A), then |F1|= 2n−4, |F2|= 2n−2, δ (CΓn−F1)≥ 1, and δ (CΓn−F2)≥ 1.
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Proof: By A = {(1),(12)}, we have CΓn[A] ∼= CΓ2 = K2. Since CΓn has no 3-cycles,

|NCΓn(A)| = 2n−4. Thus from the calculation, we have |F1| = 2n−4, |F2| = |A|+ |F1| =

2n−2.

In F1, we will show that at most two vertices adjacent to one vertex x in Sn \F2, i.e.,

|NCΓn(x)∩F2)| ≤ 2 for any x∈ Sn\F2. Note that CΓn−F1 has two parts CΓn−F2 and CΓ2 (for

convenience). Since F1 = NCΓn(A), x is not adjacent to each of V (CΓ2) = A. Suppose that the

girth of CΓn is 6. Then CΓn is a Star graph. By Proposition 5.1.1, |NCΓn(x)∩F2)| ≤ 1 for any

x ∈ Sn \F2. Suppose that the girth of CΓn is 4. Then CΓn is not a Star graph. By Proposition

5.1.2, |NCΓn(x)∩F2)| ≤ 2 for any x ∈ Sn \F2. Therefore, δ (CΓn −F2)≥ n−1−2 = n−3.

CΓn −F1 has two parts CΓn −F2 and CΓ2 (for convenience). Note that δ (CΓ2) = 1. Since

n ≥ 4, δ (CΓn −F2)≥ n−3 ≥ 1. Therefore, δ (CΓn −F1)≥ 1 for n ≥ 4. 2

Lemma 5.2.4 A graph of minimum degree 1 has at least two vertices.

The proof of Lemma 5.2.4 is straightforward.

Lemma 5.2.5 Let n ≥ 4. Then the nature diagnosability of the Cayley graph CΓn generated

by the transposition tree Γn under the PMC model t1(CΓn)≤ 2n−3.

Proof: Let A be defined as above, and let F1 = NCΓn(A), F2 = A∪NCΓn(A) (See Fig.

5.2). By Lemma 5.2.3, |F1|= 2n−4, |F2|= 2n−2, δ (CΓn −F1)≥ 1 and δ (CΓn −F2)≥ 1.

Therefore, F1 and F2 are both nature faulty sets of CΓn with |F1|= 2n−4 and |F2|= 2n−2.

Since A=F1 △F2 and NCΓn(A) =F1 ⊂F2, there is no edge of CΓn between V (CΓn)\(F1∪F2)

and F1 △ F2. By Theorem 5.2.2, we can deduce that CΓn is not nature (2n−2)-diagnosable

under PMC model. Hence, by the definition of nature diagnosability, we conclude that the

nature diagnosability of CΓn is less than 2n−2, i.e., t1(CΓn)≤ 2n−3. 2

Lemma 5.2.6 Let n ≥ 4, the nature diagnosability of the Cayley graph CΓn generated by the

transposition tree Γn under the PMC model t1(CΓn)≥ 2n−3.

Proof: By the definition of nature diagnosability, it is sufficient to show that CΓn is

nature (2n−3)-diagnosable. By Theorem 5.2.2, to prove CΓn is nature (2n−3)-diagnosable,

it is equivalent to prove that there is an edge uv ∈ E(CΓn) with u ∈ V (CΓn)\(F1 ∪ F2)
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Fig. 5.2 An illustration about the proofs of Lemma 5.2.5 and 5.3.3.

and v ∈ F1 △ F2 for each distinct pair of nature faulty subsets F1 and F2 of V (CΓn) with

|F1| ≤ 2n−3 and |F2| ≤ 2n−3.

We prove this claim by contradiction. Suppose that there are two distinct nature faulty

subsets F1 and F2 of V (CΓn) with |F1| ≤ 2n− 3 and |F2| ≤ 2n− 3, but the vertex set pair

(F1,F2) does not satisfy the condition in Theorem 5.2.2, i.e., there are no edges between

V (CΓn)\(F1 ∪F2) and F1 △ F2. Without loss of generality, assume that F2 \F1 ̸= /0. Suppose

V (CΓn) = F1 ∪F2. By the definition of CΓn, |F1 ∪F2| = |Sn| = n!. It is obvious that n! >

4n−6 for n ≥ 4. Since n ≥ 4, we have that n! = |V (CΓn)|= |F1 ∪F2|= |F1|+ |F2|− |F1 ∩

F2| ≤ |F1|+ |F2| ≤ 2(2n−3) = 4n−6, a contradiction. Therefore, V (CΓn) ̸= F1 ∪F2.

Since there are no edges between V (CΓn) \ (F1 ∪F2) and F1 △ F2, and F1 is a nature

faulty set, CΓn −F1 has two parts CΓn −F1 −F2 and CΓn[F2 \F1] (for convenience). Thus,

δ (CΓn−F1−F2)≥ 1 and δ (CΓn[F2\F1])≥ 1. Similarly, δ (CΓn[F1\F2])≥ 1 when F1\F2 ̸=

/0. Therefore, F1 ∩F2 is also a nature faulty set. Since there are no edges between V (CΓn −

F1−F2) and F1 △ F2, F1∩F2 is a nature cut. Since n ≥ 4, by Lemma 5.1.4, |F1∩F2| ≥ 2n−4.

By Lemma 5.2.4, |F2\F1| ≥ 2. Therefore, |F2|= |F2\F1|+ |F1 ∩F2| ≥ 2+2n−4 = 2n−2,

which contradicts with that |F2| ≤ 2n− 3. So CΓn is nature (2n− 3)-diagnosable. By the

definition of t1(CΓn), t1(CΓn)≥ 2n−3. 2

Combining Lemma 5.2.5 and 5.2.6, we have the following theorem.

Theorem 5.2.7 Let n ≥ 4. Then the nature diagnosability of the Cayley graph CΓn generated

by the transposition tree Γn under PMC model is 2n−3.
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5.3 The Nature Diagnosability of Cayley Graphs Gener-

ated by Transposition Trees under the MM∗ Model

Before discussing the nature diagnosability of the Cayley graph generated by the transposition

tree under the MM∗ model, we firstly present the necessary and sufficient conditions of that

a system (graph) G is g-good-neighbor t-diagnosable under MM∗ model.

Theorem 5.3.1 ([25, 112]) A system G = (V,E) is g-good-neighbor t-diagnosable under

the MM∗ model if and only if for each distinct pair of g-good-neighbor faulty subsets F1 and

F2 of V with |F1| ≤ t and |F2| ≤ t satisfies one of the following conditions.

(1) There are two vertices u,w ∈V \ (F1 ∪F2) and there is a vertex v ∈ F1 △ F2 such that

uw ∈ E and vw ∈ E.

(2) There are two vertices u,v ∈ F1 \F2 and there is a vertex w ∈V \ (F1 ∪F2) such that

uw ∈ E and vw ∈ E.

(3) There are two vertices u,v ∈ F2 \F1 and there is a vertex w ∈V \ (F1 ∪F2) such that

uw ∈ E and vw ∈ E (See Fig. 5.3).

Secondly, as we defined the nature faulty set and nature diagnosability and in chapter 2,

it is straightforward to obtain the following theorem.

Theorem 5.3.2 A system G = (V,E) is nature t-diagnosable under the MM∗ model if and

only if for each distinct pair of nature faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t

satisfies one of the following conditions.

(1) There are two vertices u,w ∈V \ (F1 ∪F2) and there is a vertex v ∈ F1 △ F2 such that

uw ∈ E and vw ∈ E.

(2) There are two vertices u,v ∈ F1 \F2 and there is a vertex w ∈V \ (F1 ∪F2) such that

uw ∈ E and vw ∈ E.

(3) There are two vertices u,v ∈ F2 \F1 and there is a vertex w ∈V \ (F1 ∪F2) such that

uw ∈ E and vw ∈ E (See Fig. 5.3).
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Fig. 5.3 Illustration of a distinguishable pair (F1,F2) under the MM* model.

Lemma 5.3.3 Let n ≥ 4, the nature diagnosability of the Cayley graph CΓn generated by the

transposition tree Γn under the MM∗ model t1(CΓn)≤ 2n−3.

Proof: Let A, F1 and F2 be defined as in Lemma 5.2.3 (See Fig. 5.2). By Lemma 5.2.3,

|F1|= 2n−4, |F2|= 2n−2, δ (CΓn −F1)≥ 1 and δ (CΓn −F2)≥ 1. So both F1 and F2 are

nature faulty sets. By the definitions of F1 and F2, F1 △ F2 = A. Note F1 \F2 = /0, F2 \F1 = A

and (V (CΓn)\ (F1 ∪F2))∩A = /0. Therefore, both F1 and F2 do not satisfy any condition in

Theorem 5.3.2, and CΓn is not nature (2n−2)-diagnosable. Hence, t1(CΓn)≤ 2n−3. The

proof is completed. 2

Lemma 5.3.4 Let n ≥ 4. Then the nature diagnosability of the Cayley graph CΓn generated

by the transposition tree Γn except the Bubble-sort graph B4, under the MM∗ model t1(CΓn)≥

2n−3.

Proof: By the definition of nature diagnosability, it is sufficient to show that CΓn is nature

(2n−3)-diagnosable.

By Theorem 5.3.2, suppose, on the contrary, that there are two distinct nature faulty

subsets F1 and F2 of CΓn with |F1| ≤ 2n−3 and |F2| ≤ 2n−3, but the vertex set pair (F1,F2)

does not satisfy the conditions in Theorem 5.3.2. Without loss of generality, assume that

F2 \F1 ̸= /0. Similar to the discussion on V (CΓn) ̸= F1 ∪F2 in Lemma 5.2.6, we know that

V (CΓn) ̸= F1 ∪F2. Therefore, V (CΓn) ̸= F1 ∪F2.

Claim I. CΓn −F1 −F2 has no isolated vertex.

Suppose, on the contrary, that CΓn −F1 −F2 has at least one isolated vertex w, since

F1 is a nature faulty set, there is a vertex u ∈ F2 \F1 such that u is adjacent to w. Since



5.3 The Nature Diagnosability of Cayley Graphs Generated by Transposition Trees under the
MM∗ Model 63

the vertex set pair (F1,F2) does not satisfy the conditions in Theorem 5.1, then there is

at most one vertex u ∈ F2 \F1 such that u is adjacent to w. Thus, there is just a vertex

u ∈ F2 \F1 such that u is adjacent to w. Similarly, we can show that there is just one vertex

v ∈ F1 \F2 such that v is adjacent to w when F1 \F2 ̸= /0. Let W ⊆ Sn \ (F1 ∪F2) be the set of

isolated vertices in CΓn[Sn \ (F1 ∪F2)], and let H be the subgraph induced by the vertex set

Sn\(F1∪F2∪W ). Then for any w∈W , there are (n−3) neighbors in F1∩F2 when F1\F2 ̸= /0.

Since |F2| ≤ 2n−3, we have ∑w∈W |NCΓn[(F1∩F2)∪W ](w)|= |W |(n−3)≤ ∑v∈F1∩F2 dCΓn(v)≤

|F1 ∩F2|(n−1)≤ (|F2|−1)(n−1)≤ (2n−4)(n−1) = 2n2 −6n+4. It follows that |W | ≤

2n+ 4. Note |F1 ∪F2| = |F1|+ |F2| − |F1 ∩F2| ≤ 2(2n− 3)− (n− 3) = 3n− 3. Suppose

V (H) = /0. Then n! = |Sn|= |V (CΓn)|= |F1 ∪F2|+ |W | ≤ 3n−3+2n+4 = 5n+1. This is

a contradiction to the assumption that n ≥ 4. So V (H) ̸= /0. Since the vertex set pair (F1,F2)

does not satisfy the condition (1) of Theorem 5.1, and no vertex of V (H) is isolated in H,

we conclude that there is no edge between V (H) and F1 △ F2. Thus, F1 ∩F2 is a vertex cut

of CΓn and δ (CΓn − (F1 ∩F2)) ≥ 1, i.e., F1 ∩F2 is a nature cut of CΓn. By Lemma 5.1.4,

|F1 ∩F2| ≥ 2n− 4. Because |F1| ≤ 2n− 3, |F2| ≤ 2n− 3, and neither F1 \F2 nor F2 \F1 is

empty, we have |F1 \F2|= |F2 \F1|= 1. Let F1 \F2 = {v1} and F2 \F1 = {v2}. Then for any

vertex w ∈W , w are adjacent to v1 and v2. According to Proposition 5.1.2, there are at most

two common neighbors for any pair of vertices in CΓn, it follows that there are at most two

isolated vertices in CΓn −F1 −F2.

Suppose that there is exactly one isolated vertex v in CΓn −F1 −F2 and CΓn is a Star

graph. Let v1 and v2 be adjacent to v. Then NCΓn(v) \ {v1,v2} ⊆ F1 ∩ F2. Since CΓn

contains no triangle, it follows that NCΓn(v1) \ {v} ⊆ F1 ∩ F2; NCΓn(v2) \ {v} ⊆ F1 ∩ F2;

[NCΓn(v) \ {v1,v2}]∩ [NCΓn(v1) \ {v}] = /0 and [NCΓn(v) \ {v1,v2}]∩ [NCΓn(v2) \ {v}] = /0.

Since CΓn is a Star graph, by Proposition 5.1.1, there is at most one common neighbor for

any pair of vertices in CΓn. Thus, it follows that |[NCΓn(v1) \ {v}]∩ [NCΓn(v2) \ {v}]| = 0.

Thus, |F1 ∩F2| ≥ |NCΓn(v)\{v1,v2}|+ |NCΓn(v1)\{v}|+ |NCΓn(v2)\{v}|= (n−3)+(n−

2)+(n−2)−0 = 3n−7. It follows that |F2|= |F2 \F1|+ |F1∩F2| ≥ 1+3n−7 = 3n−6 >

2n−3 (n ≥ 4), which contradicts |F2| ≤ 2n−3. Suppose CΓn is not a Star graph. Then CΓn

contains a 4-cycle C4. Let v1 and v2 be adjacent to v. Then NCΓn(v)\{v1,v2}⊆ F1∩F2. Since
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CΓn contains no triangle, it follows that NSn(v1)\{v} ⊆ F1 ∩F2, NCΓn(v2)\{v} ⊆ F1 ∩F2,

[NCΓn(v)\{v1,v2}]∩ [NSn(v1)\{v}] = /0 and [NCΓn(v)\{v1,v2}]∩ [NCΓn(v2)\{v}] = /0. Since

there could be C4 in CΓn, by Proposition 5.1.2, there is at most two common neighbors for

any pair of vertices in CΓn. Thus, it follows that |[NCΓn(v1) \ {v}]∩ [NCΓn(v2) \ {v}]| ≤ 1.

Thus, |F1 ∩ F2| ≥ |NCΓn(v) \ {v1,v2}|+ |NCΓn(v1) \ {v}|+ |NCΓn(v2) \ {v}| − |[NCΓn(v1) \

{v}]∩ [NCΓn(v2)\{v}]| = (n−3)+ (n−2)+ (n−2)−1 = 3n−8. Since CΓn contains no

B4, it follows that |F2|= |F2 \F1|+ |F1∩F2| ≥ 1+3n−8 = 3n−7 > 2n−3 (n ≥ 5), which

contradicts |F2| ≤ 2n−3.

Suppose that there are exactly two isolated vertices v and w in CΓn −F1 −F2. Then CΓn

is not a Star graph. Combining this with CΓ4 ̸= B4, we obtain that n ≥ 5. Let v1 and v2 be

adjacent to v and w, respectively. Then NCΓn(v)\{v1,v2} ⊆ F1 ∩F2. Since CΓn contains no

triangle, it follows that NCΓn(v1)\{v,w} ⊆ F1 ∩F2, NCΓn(v2)\{v,w} ⊆ F1 ∩F2, [NCΓn(v)\

{v1,v2}]∩ [NCΓn(v1) \ {v,w}] = /0 and [NCΓn(v) \ {v1,v2}]∩ [NCΓn(v2) \ {v,w}] = /0. Since

CΓn is not a Star graph, by Proposition 5.1.2 there are at most two common neighbors for

any pair of vertices in CΓn. Thus, it follows that |[NCΓn(v1)\{v,w}]∩ [NCΓn(v2)\{v,w}]|= 0.

Thus, |F1∩F2| ≥ |NCΓn(v)\{v1,v2}|+|NCΓn(w)\{v1,v2}|+|NCΓn(v1)\{v,w}|+|NCΓn(v2)\

{v,w}| = (n− 3)+ (n− 3)+ (n− 3)+ (n− 3) = 4n− 12. It follows that |F2| = |F2 \F1|+

|F1 ∩F2| ≥ 1+4n−12 = 4n−11 > 2n−3 (n ≥ 5), which contradicts |F2| ≤ 2n−3.

Suppose F1\F2 = /0. Then F1 ⊆F2. Since F2 is a nature faulty set, CΓn−F2 = Sn−F1−F2

has no isolated vertex. The proof of Claim is completed.

Let u∈V (CΓn)\(F1∪F2). By Claim I, u has at least one neighbor in CΓn−F1−F2. Since

the vertex set pair (F1,F2) does not satisfy any condition in Theorem 5.3.2, by the condition

(1) of Theorem 5.3.2, for any pair of adjacent vertices u,w ∈V (CΓn)\ (F1 ∪F2), there is no

vertex v ∈ F1 △ F2 such that uw ∈ E(CΓn) and vw ∈ E(CΓn). It follows that u has no neighbor

in F1 △ F2. Since u is arbitrarily chosen, we know there is no edge between V (CΓn)\(F1∪F2)

and F1 △ F2. Since F2 \F1 ̸= /0 and F1 is a nature faulty set, δCΓn([F2 \F1])≥ 1. By Lemma

5.2.4, |F2 \F1| ≥ 2. Since both F1 and F2 are nature faulty sets, and there is no edge between

V (CΓn)\ (F1 ∪F2) and F1 △ F2, F1 ∩F2 is a nature cut of CΓn. By Lemma 5.1.4, we have

|F1 ∩F2| ≥ 2n− 4. Therefore, |F2| = |F2 \F1|+ |F1 ∩F2| ≥ 2+(2n− 4) = 2n− 2, which
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contradicts |F2| ≤ 2n−3. Therefore, CΓn is nature (2n−3)-diagnosable and t1(CΓn)≥ 2n−3.

The proof is completed. 2

Combining Lemma 5.3.3 and 5.3.4, we have the following theorem.

Theorem 5.3.5 Let n ≥ 4. Then the nature diagnosability of the Cayley graph CΓn generated

by the transposition tree Γn except the Bubble-sort graph B4 under MM∗ model is 2n−3.

Fig. 5.4 The Bubble-sort graph B4.

Next, we look at the Bubble-sort graph B4 and have the following lemma.

Lemma 5.3.6 The nature diagnosability of the Bubble-sort graph B4 (See Fig. 5.4) under

the MM∗ model t1(B4)≥ 4.

Proof: By the definition of nature diagnosability, it is sufficient to show that B4 is nature

4-diagnosable.

By Theorem 5.3.2, suppose, on the contrary, that there are two distinct nature faulty

subsets F1 and F2 of B4 with |F1| ≤ 4 and |F2| ≤ 4, but the vertex set pair (F1,F2) does not

satisfy any condition in Theorem 5.3.2. Without loss of generality, assume that F2 \F1 ̸= /0.

Note that |V (B4)| = 24 and |F1|+ |F2| − |F1 ∩F2| ≤ |F1|+ |F2| ≤ 8. Therefore, V (B4) ̸=

F1 ∪F2.

Similar to the Claim in Lemma 5.3.4, i.e., CΓn −F1 −F2 contains no isolated vertex, we

know that B4 −F1 −F2 has no isolated vertex.
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Let u ∈V (B4)\ (F1 ∪F2). Since B4 −F1 −F2 has no isolated vertex, u has at least one

neighbor in B4 −F1 −F2. Since the vertex set pair (F1,F2) does not satisfy any condition

in Theorem 5.3.2, by the condition (1) of Theorem 5.3.2, for any pair of adjacent vertices

u,w ∈V (B4)\(F1∪F2), there is no vertex v ∈ F1 △ F2 such that uw ∈ E(B4) and vw ∈ E(B4).

It follows that u has no neighbor in F1 △ F2. As u is chosen arbitrarily, there is no edge

between V (B4) \ (F1 ∪F2) and F1 △ F2. Since F2 \F1 ̸= /0 and F1 is a nature faulty set,

δB4([F2 \F1]) ≥ 1. By Lemma 5.2.4, |F2 \F1| ≥ 2. Since both F1 and F2 are nature faulty

sets, and there is no edge between V (B4)\ (F1∪F2) and F1 △ F2, F1∩F2 is a nature cut of B4.

By Lemma 5.1.4, we have |F1 ∩F2| ≥ 4. Therefore, |F2|= |F2 \F1|+ |F1 ∩F2| ≥ 2+4 = 6,

which contradicts |F2| ≤ 4. Therefore, B4 is nature 4-diagnosable and t1(CΓn) ≥ 4. The

proof is completed. 2

Finally, we point out that the nature diagnosability of the Bubble-sort graph B4 un-

der MM∗ model is not 5. In Fig. 5.1, let F1 = {(23),(243),(1243),(123),(1)} and F2 =

{(23),(243),(1243),(123),(12)(34))}. Then B4 −F1 −F2 has two isolated vertices (12)

and (34). It is easy to see that F1 and F2 are nature faulty subsets and |F1|= |F2|= 5 of B4,

but the vertex set pair (F1,F2) does not satisfy any condition in Theorem 5.3.2. By Lemma

5.3.3 and 5.3.6, we have the following proposition.

Proposition 5.3.1 The nature diagnosability of the Bubble-sort graph B4 under the MM∗

model is 4.

5.4 Conclusion

In this chapter, we investigated the problem of nature diagnosability of the Cayley graph

CΓn generated by the transposition tree Γn under the PMC model and MM∗ model. It is

proved that nature diagnosability of the Cayley graph CΓn generated by the transposition tree

Γn under the PMC model and MM∗ model is 2n−3 except the Bubble-sort graph B4 under

MM∗ model, where n ≥ 4, and the nature diagnosability of the Cayley graph B4 under the

MM∗ model is 4. The above results showed that the nature diagnosability is several times

larger than the classical diagnosability of CΓn based on the condition: nature.



Chapter 6

The 2-Good-Neighbor Diagnosability of

Cayley Graphs Generated by

Transposition Trees under the PMC

Model & MM∗ Model

Let the Cayley graph CΓn be generated by the transposition tree Γn. In this chapter, we study

the 2-good-neighbor diagnosability of CΓn under the PMC model and MM∗ model and show

that the diagnosability is g(n−2)−1, where n ≥ 4 and g is the girth of CΓn. The results in

this chapter is published in Theoretical Computer Science [84].

6.1 The 2-Good-Neighbor Diagnosability of Cayley Graphs

Generated by Transposition Trees under the PMC Model

In this section, we will show that the 2-good-neighbor diagnosability of the Cayley graph

CΓn generated by the transposition tree Γn under the PMC model.
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Firstly, we include the 2-good-neighbor connectivity of Cayley graphs generated by

transposition trees CΓn, which is a indispensable part in proof to determine the 2-good-

neighbor diagnosability of CΓn under PMC Model or MM∗, where n ≥ 4.

Theorem 6.1.1 ([108]) For n ≥ 4, κ(2)(CΓn) = g(n−3), where g is the girth of CΓn.

By Theorem 6.1.1, we know that the 2-good-neighbor connectivity depends on the girth

of of CΓn. Then we divide the Cayley graphs CΓn generated by the transposition tree into

two parts, one is the case if the girth of CΓn is 4 and the other one is the case if the girth of

CΓn is 6.

In order to show the neighbourhood and the relevant properties of a 6-cycle in CΓn, we

construct a 6-cycle as A = {(1),(12),(13),(23),(123),(132)}.

Theorem 6.1.2 Let A and CΓn be defined as above, and let F1 = NCΓn(A), F2 = A∪NCΓn(A).

(1) If n≥ 4 and the girth of CΓn is 6, then |F1|= 6n−18, |F2|= 6n−12, δ (CΓn−F1)≥ 2,

and δ (CΓn −F2)≥ n−2 ≥ 2.

(2) If n≥ 5 and the girth of CΓn is 4, then |F1|= 6n−18, |F2|= 6n−12, δ (CΓn−F1)≥ 2,

and δ (CΓn −F2)≥ n−3.

Proof: Since A= {(1),(12),(13),(23),(123),(132)}, we have CΓn[A]∼=CΓ3. Let a∈ A,

a ̸= (1), and let 4 ≤ i ≤ n, (xi)∈ Γn, then a(xi)∈ NCΓn(A). Note (1)∈ A and (y j)∈ NCΓn(A),

where 4 ≤ j ≤ n and (y j) ∈ Γn. It is easy to see that i → i in the permutation a. Thus,

x → i in the permutation a(xi). Assume that a(xi) = (y j), then x = y or x = j. If x = y,

then i = j. Thus, (xi) = (y j), a contradiction to the fact that a ̸= (1). If x = j, then

i = y. Thus, (xi) = (y j), a contradiction to the fact that a ̸= (1). Therefore, a(xi) ̸= (y j).

By Theorem 5.1.1, CΓn is vertex transitive. Combining this with a(xi) ̸= (y j), we have

that |NCΓn(u)∩NCΓn(v)∩F1| = 0 for any u,v ∈ A. Thus from calculating, we have |F1| =

6(n−1−2) = 6n−18, |F2|= |A|+ |F1|= 6n−12.

In F1, we find at most two vertices adjacent to one vertex x in Sn \F2. We consider two

claims as following.

Claim 1. For any x ∈ Sn \F2, |NCΓn(x)∩F2)| ≤ 1 if the girth of CΓn is 6.
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In this case, CΓn is a star. Let Ω = {(12),(13), . . . ,(1n)} and let (1i),(1 j),(1k),(1l)∈ Ω,

where 4 ≤ i, j,k, l ≤ n. Note (1i) ∈ F1. Assume (1i)(1 j) ∈ F1. Then there are a ∈ A and

(1k) ∈ Ω such that (1i)(1 j) = a(1k). Since the girth of the star is 6, we have a ̸= (1). Since

(1i)(1 j) ∈ F1, i ̸= j. It is easy to see that 1 → j in the permutation (1i)(1 j) and 1 → k

in the permutation a(1k). Since (1i)(1 j) = a(1k), j = k and (1i) = a, a contradiction to

a ∈ A. Therefore, (1i)(1 j) ∈ Sn \F2 when i ̸= j. Assume (1i)(1 j) = x = a(1k)(1l) when

i ̸= j and k ̸= l. It is easy to see that 1 → j in the permutation (1i)(1 j) and 1 → l in the

permutation a(1k)(1l). Since (1i)(1 j) = a(1k)(1l), j = l and (1i) = a(1k). Similarly, i = k

and a = (1), a contradiction. Therefore, (1i)(1 j) ̸= a(1k)(1l). By Theorem 5.1.1, It follows

that x ∈ V (CΓn −F2) is at most adjacent to one vertex of F2. Thus, for any x ∈ Sn \F2,

|NCΓn(x)∩F2)| ≤ 1 if the girth of CΓn is 6.

By Claim 1, δ (CΓn−F2)≥ n−1−1= n−2. CΓn−F1 has two components CΓn−F2 and

CΓ3. Note that δ (CΓ3) = 2. Since n ≥ 4, δ (CΓn−F2)≥ n−2 ≥ 2, therefore, δ (CΓn−F1)≥

2 for n ≥ 4.

Claim 2. For any x ∈ Sn \F2, |NCΓn(x)∩F2)| ≤ 2 if the girth of CΓn is 4.

In this case, CΓn is not a star. Assume (yi)(z j) = x = a(uk)(vl) ∈ Sn \F2 and a ̸= (1).

Note that CΓ3 is a 6-cycle v1v2v3v4v5v6v1. Let v1 = (1), since CΓn is a bipartite graph, it has

not add cycle. Therefore, a = v3 or v5. In this case, v1v2v3 is in two 6-cycles v1v2v3v4v5v6v1

and v1,v2,v3,a(uk),x,(yi),v1. This is a contradiction.

Assume (yi)(z j) = x = a(uk)(vl)∈ Sn\F2 and a= (1). Then there is a 4-cycle (1),(yi),x,

(uk),(1). Therefore, (yi) and (z j) are disjoint, and (yi) = (vl), (z j) = (uk). This 4-cycle is

unique. Thus, for any x ∈ Sn \F2, |NCΓn(x)∩F2)| ≤ 2 if the girth of CΓn is 4.

By Claim 2, δ (CΓn−F2)≥ n−1−2= n−3. CΓn−F1 has two components CΓn−F2 and

CΓ3. Note that δ (CΓ3)= 2. Since n≥ 5, δ (CΓn−F2)≥ n−3≥ 2. Therefore, δ (CΓn−F1)≥

2 for n ≥ 5. 2

Similarly, in order to show the neighbourhood and the relevant properties of a 4-cycle

in CΓn, we construct a 4-cycle as A∗ = {(1),(12),(12)(34),(34)}, then CΓ4[A∗] is a 4-

cycle, NCΓ4(A
∗) = {(23),(123),(243),(1243)}. By Fig. 5.4, it is easy to see that x ∈

S4\(A∗∪NCΓ4(A
∗)) is at most adjacent to one vertex of NCΓ4(A

∗).
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Let (i, j) and (k, l) be disjoint, (i, j),(k, l)∈ Γn, and let A1 = {(1),(i, j),(i, j)(k, l),(k, l)},

A∗
1 =

 A∗, n = 4;

A1, n ≥ 5.

Lemma 6.1.3 Let A∗
1 be defined as above, and let the girth of CΓn be 4. If n ≥ 4, F1 =

NCΓn(A
∗
1) and F2 = A∗

1 ∪NCΓn(A
∗
1), then |F1|= 4n−12, |F2|= 4n−8, δ (CΓn −F1)≥ 2 and

δ (CΓn −F2)≥ 2.

Proof: Suppose that n = 4. Since the girth of CΓ4 is 4, CΓ4 is a Bubble-sort graph

B4. Let A∗ be defined as above and let F1 = NCΓ4(A
∗) and F2 = A∗ ∪NCΓ4(A

∗). Recall

that A∗ = {(1),(12),(12)(34),(34)} and CΓ4[A∗] is a 4-cycle, it is straightforward that

NCΓ4(A
∗) = {(23),(123),(243),(1243)} and so we have that |F1| = 4 = 4 ∗ 4− 12, |F2| =

8 = 4 ∗ 4− 8, δ (CΓ4 −F1) ≥ 2 and δ (CΓ4 −F2) ≥ 2. Therefore, suppose that n ≥ 5. By

A1 = {(1),(i, j),(i, j)(k, l),(k, l)}, we have that CΓn[A1] is a 4-cycle. Let a ∈ A1 and a ̸= (1).

If (x,y) ∈ Γn and (x,y) /∈ A1, then a(x,y) ∈ NCΓn(A1). Note (1) ∈ A1 and (rt) ∈ NCΓn(A1),

where (r, t) ∈ Γn and (r, t) /∈ A1. Assume that a(x,y) = (r, t) and let a = (i, j). If (i, j) and

(x,y) are disjoint, then this is a contradiction to Theorem 5.1.2. Combining this with (x,y) /∈

A1, |{x,y}∩{i, j}|= 1. Without loss of generality, assume that j = x. Then a(x,y) = (i, j,y),

a contradiction to a(x,y) = (r, t). Similarly, we have a ̸= (k, l). Let a = (i, j)(k, l). If (x,y)

is disjoint (i, j) or (k, l), then this is a contradiction to Theorem 5.1.2. Since (x,y) /∈ A1,

we have that |{x,y}∩{i, j}|= 1 or |{x,y}∩{k, l}|= 1. It is easy to see that (i, j)(k, l)(x,y)

is not a transposition, a contradiction to a(x,y) = (r, t). Therefore, a(x,y) ̸= (r, t). By

Theorem 5.1.1, CΓn is vertex transitive. Combining this with a(x,y) ̸= (r, t), we have that

|NCΓn(u)∩NCΓn(v)∩F1|= 0 for any u,v ∈ A1. By calculating, we have |F1|= 4(n−1−2) =

4n−12, |F2|= |A1|+ |F1|= 4n−8.

Claim. |NCΓn(x)∩F2)| ≤ 2 for any x ∈ Sn \F2.

In F1 we find at most two vertices adjacent to one vertex x in Sn\F2. Let (y, i),(z, j),(u,k),

(v, l) ∈ Γn and a ∈ A1. Assume (y, i)(z, j) = x = a(u,k)(v, l) ∈ Sn \F2 and a ̸= (1). Note that

CΓn[A1] is a 4-cycle (1),(i, j),(i, j)(k, l),(k, l),(1). Since CΓn is a bipartite graph, it has not
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add cycle. Therefore, a = (i, j)(k, l). In this case, (1),(i, j),(i, j)(k, l),a(uk),x,(yi),(1) is a

6-cycle. This is a contradiction. Thus, a = (1).

Let (x,y) ∈ Γn and (x,y) /∈ A1, (r, t) ∈ Γn, (r, t) /∈ A1. If (x,y) and (r, t) are disjoint, then

(1),(x,y),(x,y)(r, t),(r, t),(1) is a 4-cycle and (x,y)(r, t) ∈ Sn \F2. Note that this 4-cycle is

unique. By Theorem 5.1.1, It follows that x ∈V (CΓn−F2) is at most adjacent to two vertices

of F2. Thus, |NCΓn(x)∩F2)| ≤ 2 for any x ∈ Sn \F2. The proof of this claim is completed.

By Claim, δ (CΓn −F2) ≥ n− 1− 2 = n− 3. CΓn −F1 has two components CΓn −F2

and CΓn[A1]. Note that δ (CΓn[A1]) = 2. Since n ≥ 5, δ (CΓn −F2)≥ n−3 ≥ 2. Therefore,

δ (CΓn −F1)≥ 2 for n ≥ 5. 2

Next, we shall show the upper bounds of 2-good-neighbor diagnosability of CΓn under

the PMC model, respectively.

Lemma 6.1.4 Let H ⊆V (CΓn) such that δ (CΓn[H])≥ 2. Then |H| ≥ g, where g is the girth

of CΓn.

The proof of the Lemma 6.1.4 is straightforward.

Lemma 6.1.5 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the transpo-

sition tree Γn be 6. Then the 2-good-neighbor diagnosability of CΓn under the PMC model

t2(CΓn)≤ 6n−13.

Proof: Let A be defined as above, and let F1 = NCΓn(A), F2 = A∪NCΓn(A). By Theorem

6.1.2(1), |F1| = 6n− 18, |F2| = 6n− 12, δ (CΓn −F1) ≥ 2 and δ (CΓn −F2) ≥ n− 2 ≥ 2.

Therefore, F1 and F2 are both 2-good-neighbor faulty sets of CΓn with |F1| = 6n − 18

and |F2| = 6n− 12. Since A = F1 △ F2 and NCΓn(A) = F1 ⊂ F2, there is no edge of CΓn

between V (CΓn)\(F1 ∪F2) and F1 △ F2. By Theorem 5.2.1, we can deduce that CΓn is not

2-good-neighbor (6n− 12)-diagnosable under PMC model. Hence, by the definition of

2-good-neighbor diagnosability, we conclude that the 2-good-neighbor diagnosability of CΓn

is less than 6n−12, i.e., t2(CΓn)≤ 6n−13. 2
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Lemma 6.1.6 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the transpo-

sition tree Γn be 4. Then the 2-good-neighbor diagnosability of CΓn under the PMC model

t2(CΓn)≤ 4n−9.

Proof: Let A∗
1 be defined as above, and let F1 = NCΓn(A

∗
1), F2 = A∗

1 ∪NCΓn(A
∗
1). By

Lemma 6.1.3, |F1|= 4n−12, |F2|= 4n−8, δ (CΓn−F1)≥ 2 and δ (CΓn−F2)≥ 2. Therefore,

F1 and F2 are both 2-good-neighbor faulty sets of CΓn with |F1| = 4n − 12 and |F2| =

4n− 8. Since A1 = F1 △ F2 and NCΓn(A1) = F1 ⊂ F2, there is no edge of CΓn between

V (CΓn)\(F1 ∪F2) and F1 △ F2. By Theorem 5.2.1, we can deduce that CΓn is not 2-good-

neighbor (4n− 8)-diagnosable under PMC model. Hence, by the definition of 2-good-

neighbor diagnosability, we conclude that the 2-good-neighbor diagnosability of CΓn is less

than 4n−8, i.e., t2(CΓn)≤ 4n−9. 2

Lemma 6.1.7 Let n ≥ 5, and let the girth of the Cayley graph CΓn generated by the transpo-

sition tree Γn be 6. Then the 2-good-neighbor diagnosability of CΓn under the PMC model

t2(CΓn)≥ 6n−13.

Proof: By the definition of 2-good-neighbor diagnosability, it is sufficient to show that

CΓn is 2-good-neighbor (6n−13)-diagnosable. By Theorem 5.2.1, to prove CΓn is 2-good-

neighbor (6n−13)-diagnosable, it is equivalent to prove that there is an edge uv ∈ E(CΓn)

with u ∈V (CΓn)\(F1 ∪F2) and v ∈ F1 △ F2 for each distinct pair of 2-good-neighbor faulty

subsets F1 and F2 of V (CΓn) with |F1| ≤ 6n−13 and |F2| ≤ 6n−13.

We prove this statement by contradiction. Suppose that there are two distinct 2-good-

neighbor faulty subsets F1 and F2 of V (CΓn) with |F1| ≤ 6n− 13 and |F2| ≤ 6n− 13, but

the vertex set pair (F1,F2) does not satisfy the condition in Theorem 5.2.1, i.e., there are

no edges between V (CΓn)\(F1 ∪F2) and F1 △ F2. Without loss of generality, assume that

F2 \ F1 ̸= φ . Assume V (CΓn) = F1 ∪ F2. By the definition of CΓn, |F1 ∪ F2| = |Sn| =

n!. We claim that n! > 12n− 26 for n ≥ 4. When n = 4, n! = 24,12n− 26 = 22. So

n! > 12n− 26 for n = 4. Assume that n! > 12n− 26 for n ≥ 5. (n+ 1)! = n!(n+ 1) >

(n+1)(12n−26) = n(12n−26)+(12n−14)−12 = [12(n+1)−26]+n(12n−26)−12 =

[12(n+1)−26]+2(6n2 −13n−6). It is sufficient to show that 6n2 −13n−6 ≥ 0 for n ≥ 5.
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Let y = 6x2 − 13x− 6. Then y = 6x2 − 13x− 6 is a quadratic function. If x ≥ 3, we have

y = 6x2 −13x−6 ≥ 0.

Since we have n ≥ 4, then n! = |V (CΓn)| = |F1 ∪F2| = |F1|+ |F2|− |F1 ∩F2| ≤ |F1|+

|F2| ≤ 2(6n− 13) = 12n− 26, a contradiction to n! > 12n− 26. Therefore, let V (CΓn) ̸=

F1 ∪F2.

Since there are no edges between V (CΓn) \ (F1 ∪F2) and F1 △ F2, and F1 is a 2-good-

neighbor faulty set, CΓn −F1 has two components CΓn −F1 −F2 and CΓn[F2 \F1]. Thus,

δ (CΓn−F1−F2)≥ 2 and δ (CΓn[F2\F1])≥ 2. Similarly, δ (CΓn[F1\F2])≥ 2 when F1\F2 ̸=

φ . Therefore, F1 ∩F2 is also a 2-good-neighbor faulty set. Since there are no edges between

V (CΓn −F1 −F2) and F1 △ F2, F1 ∩F2 is a 2-good-neighbor cut. Since n ≥ 5, by Theorem

6.1.1, |F1 ∩ F2| ≥ 6n − 18. By Lemma 6.1.4, |F2\F1| ≥ 6. Therefore, |F2| = |F2\F1|+

|F1 ∩F2| ≥ 6+ 6n− 18 = 6n− 12, which contradicts with that |F2| ≤ 6n− 13. So CΓn is

2-good-neighbor (6n−13)-diagnosable. By the definition of t2(CΓn), t2(CΓn)≥ 6n−13.

Based on these two cases above, we conclude that t2(CΓn)≥ 6n−13 if g = 6. 2

In the end, we shall show the lower bounds of 2-good-neighbor diagnosability of CΓn

with girth 4 and 6 under the PMC model, respectively.

Lemma 6.1.8 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the transpo-

sition tree Γn be 4. Then the 2-good-neighbor diagnosability of CΓn under the PMC model

t2(CΓn)≥ 4n−9.

Proof: By the definition of 2-good-neighbor diagnosability, it is sufficient to show that

CΓn is 2-good-neighbor (4n−9)-diagnosable. By Theorem 5.2.1, to prove CΓn is 2-good-

neighbor (4n−9)-diagnosable, it is equivalent to prove that there is an edge uv ∈ E(CΓn)

with u ∈V (CΓn)\(F1 ∪F2) and v ∈ F1 △ F2 for each distinct pair of 2-good-neighbor faulty

subsets F1 and F2 of V (CΓn) with |F1| ≤ 4n−9 and |F2| ≤ 4n−9.

We prove this statement by contradiction. Suppose that there are two distinct 2-good-

neighbor faulty subsets F1 and F2 of CΓn with |F1| ≤ 4n−9 and |F2| ≤ 4n−9, but the vertex

set pair (F1,F2) does not satisfy the condition in Theorem 5.2.1, i.e., there are no edges

between V (CΓn)\(F1 ∪F2) and F1 △ F2. Without loss of generality, assume that F2 \F1 ̸= φ .
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Assume V (CΓn) = F1 ∪F2. By the definition of CΓn, |F1 ∪F2| = |Sn| = n!. We claim that

n! > 8n− 18 for n ≥ 4. When n = 4, n! = 24,8n− 18 = 14. So n! > 8n− 18 for n = 4.

Assume that n! > 8n−18 for n ≥ 5. (n+1)! = n!(n+1)> (n+1)(8n−18) = n(8n−18)+

(8n−10)−8 = [8(n+1)−18]+n(8n−18)−8 = [8(n+1)−18]+2(4n2 −9n−4). It is

sufficient to show that 4n2−9n−4≥ 0 for n≥ 4. Let y= 4x2−9x−4. Then y= 4x2−9x−4

is a quadratic function. If x ≥ 3, then y = 4x2 −9x−4 ≥ 0.

Since n ≥ 4, we have that n! = |V (CΓn)| = |F1 ∪F2| = |F1|+ |F2| − |F1 ∩F2| ≤ |F1|+

|F2| ≤ 2(4n−9) = 8n−18, a contradiction to n! > 8n−18. Therefore, let V (CΓn) ̸= F1∪F2.

Since there are no edges between V (CΓn) \ (F1 ∪F2) and F1 △ F2, and F1 is a 2-good-

neighbor faulty set, CΓn −F1 has two components CΓn −F1 −F2 and CΓn[F2 \F1]. Thus,

δ (CΓn −F1 −F2) ≥ 2 and δ (CΓn[F2 \F1]) ≥ 2. Similarly, δ (CΓn[F1 \F2]) ≥ 2 when F1 \

F2 ̸= φ . Therefore, F1 ∩F2 is also a 2-good-neighbor faulty set. Since there are no edges

between V (CΓn −F1 −F2) and F1 △ F2, F1 ∩F2 is a 2-good-neighbor cut. Since n ≥ 4, by

Theorem 6.1.1, |F1 ∩F2| ≥ g(n− 3) = 4n− 12. By Lemma 6.1.4, |F2\F1| ≥ 4. Therefore,

|F2| = |F2\F1|+ |F1 ∩F2| ≥ 4+ 4n− 12 = 4n− 8 for g = 4, which contradicts with that

|F2| ≤ 4n−9. So CΓn is 2-good-neighbor (4n−9)-diagnosable. By the definition of t2(CΓn),

t2(CΓn)≥ 4n−9.

Based on these two cases above, we conclude that t2(CΓn)≥ 4n−9 if g = 4. 2

Combining Lemma 6.1.5 and 6.1.7, we have the following theorem.

Theorem 6.1.9 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the

transposition tree Γn be 6. Then the 2-good-neighbor diagnosability of CΓn under PMC

model is 6n−13.

Combining Lemma 6.1.6 and 6.1.8, we have the following theorem.

Theorem 6.1.10 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the

transposition tree Γn be 4. Then the 2-good-neighbor diagnosability of CΓn under the PMC

model is 4n−9.
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6.2 The 2-Good-Neighbor Diagnosability of Cayley Graphs

Generated by Transposition Trees under the MM∗ Model

Here we show the 2-good-neighbor diagnosability of CΓn with girth 4 under the MM∗ model.

Lemma 6.2.1 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the transpo-

sition tree Γn be 6. Then the 2-good-neighbor diagnosability of CΓn under the MM∗ model

t2(CΓn)≤ 6n−13.

Proof: Let A, F1 and F2 be defined in Theorem 6.1.2(1). By the Theorem 6.1.2(1),

|F1| = 6n− 18, |F2| = 6n− 12, δ (CΓn −F1) ≥ 2 and δ (CΓn −F2) ≥ n− 2 ≥ 2. So both

F1 and F2 are 2-good-neighbor faulty sets. By the definitions of F1 and F2, F1 △ F2 = A.

Note F1 \F2 = φ , F2 \F1 = A and (V (CΓn) \ (F1 ∪F2))∩A = φ . Therefore, both F1 and

F2 does not satisfy any one condition in Theorem 5.3.1, and CΓn is not 2-good-neighbor

(6n−12)-diagnosable. Hence, t2(CΓn)≤ 6n−13. The proof is completed. 2

Lemma 6.2.2 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the transpo-

sition tree Γn be 4. Then the 2-good-neighbor diagnosability of CΓn under the MM∗ model

t2(CΓn)≤ 4n−9.

Proof: Let A∗
1, F1 and F2 be defined in Lemma 6.1.3. By the Lemma 6.1.3, |F1|= 4n−12,

|F2|= 4n−8, δ (CΓn−F1)≥ 2 and δ (CΓn−F2)≥ 2. So both F1 and F2 are 2-good-neighbor

faulty sets. By the definitions of F1 and F2, F1 △ F2 = A1. Note F1 \F2 = φ , F2 \F1 = A1

and (V (CΓn) \ (F1 ∪F2))∩A1 = φ . Therefore, both F1 and F2 does not satisfy any one

condition in Theorem 5.3.1, and CΓn is not 2-good-neighbor (4n−8)-diagnosable. Hence,

t2(CΓn)≤ 4n−9. The proof is completed. 2

Lemma 6.2.3 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the transpo-

sition tree Γn be 6. Then the 2-good-neighbor diagnosability of CΓn under the MM∗ model

t2(CΓn)≥ 6n−13.

Proof: By the definition of 2-good-neighbor diagnosability, it is sufficient to show

that CΓn is 2-good-neighbor (6n− 13)-diagnosable. By Theorem 5.3.1, to prove CΓn is
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2-good-neighbor (6n−13)-diagnosable, it is equivalent to prove that for each distinct pair of

2-good-neighbor faulty subsets F1 and F2 of V (CΓn) with |F1| ≤ 6n−13 and |F2| ≤ 6n−13

satisfies one of the following conditions.

(1). There are two vertices u,w ∈ V (CΓn \ (F1 ∪F2) and there is a vertex v ∈ F1 △ F2

such that uw ∈ E(CΓn and vw ∈ E(CΓn).

(2). There are two vertices u,v ∈ F1 \F2 and there is a vertex w ∈V (CΓn)\ (F1∪F2) such

that uw ∈ E(CΓn) and vw ∈ E(CΓn).

(3). There are two vertices u,v ∈ F2 \F1 and there is a vertex w ∈V (CΓn)\ (F1∪F2) such

that uw ∈ E(CΓn) and vw ∈ E(CΓn).

Suppose, on the contrary, that there are two distinct 2-good-neighbor faulty subsets F1

and F2 of CΓn with |F1| ≤ 6n−13 and |F2| ≤ 6n−13, but the vertex set pair (F1,F2) does not

satisfy any condition in Theorem 5.3.1. Without loss of generality, assume that F2 \F1 ̸= φ .

Assume V (CΓn) =F1∪F2. By the definition of CΓn, |F1∪F2|= |Sn|= n!. We claim that n!>

12n−26 for n≥ 4. When n= 4, n!= 24,12n−26= 22. So n!> 12n−26 for n= 4. Assume

that n! > 12n− 26 for n ≥ 5. (n+ 1)! = n!(n+ 1) > (n+ 1)(12n− 26) = n(12n− 26)+

(12n−14)−12= [12(n+1)−26]+n(12n−26)−12= [12(n+1)−26]+2(6n2−13n−6).

It is sufficient to show that 6n2 − 13n− 6 ≥ 0 for n ≥ 5. Let y = 6x2 − 13x− 6. Then

y = 6x2 −13x−6 is a quadratic function. If x ≥ 3, then y = 6x2 −13x−6 ≥ 0.

Since n ≥ 4, we have that n! = |V (CΓn)| = |F1 ∪F2| = |F1|+ |F2| − |F1 ∩F2| ≤ |F1|+

|F2| ≤ 2(6n− 13) = 12n− 26, a contradiction to n! > 12n− 26. Therefore, let V (CΓn) ̸=

F1 ∪F2.

Claim. CΓn −F1 −F2 has no isolated vertex.

Since F1 is a 2-good-neighbor faulty set, |NCΓn−F1(x)| ≥ 2 for any x ∈V (CΓn)\F1. As

the vertex set pair (F1,F2) does not satisfy any one condition in Theorem 5.3.1. By the

condition (3) of Theorem 5.3.1, for any pair of vertices u,v ∈ F2 \F1, there is no vertex

w ∈ V (CΓn) \ (F1 ∪F2) such that uw ∈ E(CΓn) and vw ∈ E(CΓn). Therefore, any vertex

w in V (CΓn) \ (F1 ∪F2) has at most one neighbor in F2 \F1. Thus, for any vertex w ∈

V (CΓn)\ (F1 ∪F2), |NCΓn−F1−F2(w)| ≥ 2−1 = 1, i.e., every vertex of CΓn −F1 −F2 is not

an isolated vertex. The proof of Claim is completed.
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Let u ∈ V (CΓn) \ (F1 ∪F2). By Claim, u has at least one neighbor in CΓn −F1 −F2.

Since the vertex set pair (F1,F2) does not satisfy any one condition in Theorem 5.3.1, by the

condition (1) of Theorem 5.3.1, for any pair of adjacent vertices u,w ∈V (CΓn)\ (F1 ∪F2),

there is no vertex v ∈ F1 △ F2 such that uw ∈ E(CΓn) and vw ∈ E(CΓn). It follows that u has

no neighbor in F1 △ F2. By the arbitrariness of u, there is no edge between V (CΓn)\(F1∪F2)

and F1 △ F2. Since F2 \F1 ̸= /0 and F1 is a 2-good-neighbor faulty set, δCΓn([F2 \F1])≥ 2. By

Lemma 6.1.4, |F2 \F1| ≥ 6. Since both F1 and F2 are 2-good-neighbor faulty sets, and there

is no edge between V (CΓn)\ (F1 ∪F2) and F1 △ F2, F1 ∩F2 is a 2-good-neighbor cut of CΓn.

By Theorem 6.1.1, we have |F1 ∩F2| ≥ 6n− 18. Therefore, |F2| = |F2 \F1|+ |F1 ∩F2| ≥

6+(6n−18)= 6n−12, which contradicts |F2| ≤ 6n−13. Therefore, CΓn is 2-good-neighbor

(6n−13)-diagnosable and t2(CΓn)≥ 6n−13. The proof is completed. 2

Lemma 6.2.4 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the transpo-

sition tree Γn be 4. Then the 2-good-neighbor diagnosability of CΓn under the MM∗ model

t2(CΓn)≥ 4n−9.

Proof: By the definition of 2-good-neighbor diagnosability, it is sufficient to show

that CΓn is 2-good-neighbor (4n− 9)-diagnosable. By Theorem 5.3.1, to prove CΓn is

2-good-neighbor (4n−9)-diagnosable, it is equivalent to prove that for each distinct pair of

2-good-neighbor faulty subsets F1 and F2 of V (CΓn) with |F1| ≤ 4n−9 and |F2| ≤ 4n−9

satisfies one of the following conditions.

(1). There are two vertices u,w ∈ V (CΓn \ (F1 ∪F2) and there is a vertex v ∈ F1 △ F2

such that uw ∈ E(CΓn and vw ∈ E(CΓn).

(2). There are two vertices u,v ∈ F1 \F2 and there is a vertex w ∈V (CΓn)\ (F1∪F2) such

that uw ∈ E(CΓn) and vw ∈ E(CΓn).

(3). There are two vertices u,v ∈ F2 \F1 and there is a vertex w ∈V (CΓn)\ (F1∪F2) such

that uw ∈ E(CΓn) and vw ∈ E(CΓn).

Suppose, on the contrary, that there are two distinct 2-good-neighbor faulty subsets F1 and

F2 of CΓn with |F1| ≤ 4n−9 and |F2| ≤ 4n−9, but the vertex set pair (F1,F2) does not satisfy

any one condition in Theorem 5.3.1. Without loss of generality, assume that F2 \F1 ̸= φ .
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Assume V (CΓn) = F1 ∪F2. By the definition of CΓn, |F1 ∪F2| = |Sn| = n!. We claim that

n! > 8n− 18 for n ≥ 4. When n = 4, n! = 24,8n− 18 = 14. So n! > 8n− 18 for n = 4.

Assume that n! > 8n−18 for n ≥ 5. (n+1)! = n!(n+1)> (n+1)(8n−18) = n(8n−18)+

(8n−10)−8 = [8(n+1)−18]+n(8n−18)−8 = [8(n+1)−18]+2(4n2 −9n−4). It is

sufficient to show that 4n2−9n−4≥ 0 for n≥ 4. Let y= 4x2−9x−4. Then y= 4x2−9x−4

is a quadratic function. If x ≥ 3, then y = 4x2 −9x−4 ≥ 0.

Since n ≥ 4, we have that n! = |V (CΓn)| = |F1 ∪F2| = |F1|+ |F2| − |F1 ∩F2| ≤ |F1|+

|F2| ≤ 2(4n−9) = 8n−18, a contradiction to n! > 8n−18. Therefore, let V (CΓn) ̸= F1∪F2.

Claim. CΓn −F1 −F2 has no isolated vertex.

Since F1 is a 2-good-neighbor faulty set, |NCΓn−F1(x)| ≥ 2 for any x ∈V (CΓn)\F1. As

the vertex set pair (F1,F2) does not satisfy any one condition in Theorem 5.3.1. By the

condition (3) of Theorem 5.3.1, for any pair of vertices u,v ∈ F2 \F1, there is no vertex

w ∈ V (CΓn) \ (F1 ∪F2) such that uw ∈ E(CΓn) and vw ∈ E(CΓn). Therefore, any vertex

w in V (CΓn) \ (F1 ∪F2) has at most one neighbor in F2 \F1. Thus, for any vertex w ∈

V (CΓn)\ (F1 ∪F2), |NCΓn−F1−F2(w)| ≥ 2−1 = 1, i.e., every vertex of CΓn −F1 −F2 is not

an isolated vertex. The proof of Claim is completed.

Let u ∈V (CΓn)\(F1∪F2). By Claim, u has at least one neighbor in CΓn−F1−F2. Since

the vertex set pair (F1,F2) does not satisfy any condition in Theorem 5.3.1, by the condition

(1) of Theorem 5.3.1, for any pair of adjacent vertices u,w ∈ V (CΓn) \ (F1 ∪F2), there is

no vertex v ∈ F1 △ F2 such that uw ∈ E(CΓn) and vw ∈ E(CΓn). It follows that u has no

neighbor in F1 △ F2. By the arbitrariness of u, there is no edge between V (CΓn)\ (F1 ∪F2)

and F1 △ F2. Since F2 \F1 ̸= /0 and F1 is a 2-good-neighbor faulty set, δCΓn([F2 \F1])≥ 2. By

Lemma 6.1.4, |F2 \F1| ≥ 4. Since both F1 and F2 are 2-good-neighbor faulty sets, and there

is no edge between V (CΓn)\ (F1 ∪F2) and F1 △ F2, F1 ∩F2 is a 2-good-neighbor cut of CΓn.

By Theorem 6.1.1, we have |F1 ∩F2| ≥ 4n− 12. Therefore, |F2| = |F2 \F1|+ |F1 ∩F2| ≥

4+(4n−12) = 4n−8, which contradicts |F2| ≤ 4n−9. Therefore, CΓn is 2-good-neighbor

(4n−9)-diagnosable and t2(CΓn)≥ 4n−9. The proof is completed. 2

Combining Lemma 6.2.1 and 6.2.3, we have the following theorem.
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Theorem 6.2.5 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the

transposition tree Γn be 6. Then the 2-good-neighbor diagnosability of CΓn under MM∗

model is 6n−13.

Combining Lemma 6.2.2 and 6.2.4, we have the following theorem.

Theorem 6.2.6 Let n ≥ 4, and let the girth of the Cayley graph CΓn generated by the

transposition tree Γn be 4. Then the 2-good-neighbor diagnosability of CΓn under the MM∗

model is 4n−9.

6.3 Conclusion

In this chapter, we investigated the problem of 2-good-neighbor diagnosability of the Cayley

graph CΓn generated by the transposition tree Γn under the PMC model and MM∗ model.

It is proved that 2-good-neighbor diagnosability of the Cayley graph CΓn generated by the

transposition tree Γn under the PMC model and MM∗ model is g(n−2)−1, where n ≥ 4

and g is the girth of CΓn. The above results showed that the 2-good-neighbor diagnosability

is several times larger than the classical diagnosability of CΓn depending on the condition

2-good-neighbor. Comparing with 1-good-neighbor property, 2-good-neighbor property

requires that the minimum degree of each component is 2 after the removal of faulty set.

Thus, it is easy to see there exists a cycle in each component. It is more complicated to

investigate the neighborhood of minimum cycles. Therefore, the results are different for

Cayley graphs with different girths.



Chapter 7

The Nature Connectivity and

Diagnosability of Cayley Graphs

Generated by Complete Graphs

In this chapter, we show that the connectivity of CKn is n(n−1)
2 , the nature connectivity of

CKn is n2 −n−2 and the nature diagnosability of CKn under the PMC model is n2 −n−1

for n ≥ 4 and under the MM∗ model is n2 −n−1 for n ≥ 5. The results in this chapter is

published in Discrete Applied Mathematics [87].

7.1 Background & Known Results

Firstly, we list a few known results in order to prove Proposition 7.1.2, which will play an

important role of determining the nature connectivity and diagnosabilities of CKn.

Theorem 7.1.1 ([1]) The nest graph CKn is vertex transitive and bipartite.

Proposition 7.1.1 Let n ≥ 3. The girth of CKn is 4.

Proof: Since the nest graph is a simple graph, it is easy to see that the girth is not

2. By Theorem 7.1.1, there is no 3-cycle in CKn. Note that there is a 4-cycle in CKn as,
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(1),(ab),(ab)(cd),(cd),(1), where (ab) is disjoint to (cd). Therefore, the girth of CKn is 4.

2

By using Theorem 7.1.1 and Proposition 7.1.1 in the proofs, we will have the following

proposition and lemma.

Proposition 7.1.2 Let CKn be a nest graph. If two vertices u,v are adjacent, then there is no

common neighbor vertex of these two vertices, i.e., |N(u)∩N(v)|= 0. If two vertices u,v

are not adjacent, then there are at most three common neighbor vertices of these two vertices,

i.e., |N(u)∩N(v)| ≤ 3.

Proof: In this proof, a permutation is denoted by a product of disjoint cycles. The two

cases can be proved by contradiction.

Case 1. If two vertices are adjacent and they have a common neighbor vertex, then these

3 vertices will form a cycle of length 3. It is a contradiction to Theorem 7.1.1 that there are

no odd cycles in a bipartite graph CKn.

Case 2. Let two vertices be non-adjacent. Suppose, on the contrary, that |N(u)∩N(v)| ≥ 4.

By Theorem 7.1.1, without loss of generality, assume that u = (1), i.e., u is the identity

vertex. Then v /∈ E(Kn). It is sufficient to suppose that {(ia),( jb),(kc),(ld)} ⊆ E(Kn),

{(ia),( jb),(kc),(ld)} ⊆ N(u)∩N(v) and |{(ia),( jb),(kc),(ld)}|= 4. By Proposition 7.1.1,

the girth of CKn is 4. Let v = (ia)( jb).

Case 2.1. (ia) is disjoint to ( jb).

In this case, u,(ia),v,( jb),u is also a 4-cycle. Since u,(ia),v,(kc),u is also a cycle of

length 4, let v = (kc)(xy) = (ia)( jb). By Theorem 5.1.2, we have that (kc) is disjoint to (xy),

and (kc) = ( jb) or (kc) = (ia), a contradiction. Similarly, we have (ld) = ( jb) or (ld) = (ia),

a contradiction. Therefore, |N(u)∩N(v)|= 2 in this case.

Case 2.2. (ia) is disjoint to ( jb).

Without loss of generality, let a = j. We have v = (iab). Since u,(ia),v,( jb),u is a

4-cycle, there is (xy) ∈ E(Kn) such that ( jb)(xy) = (ab)(xy) = v = (iab). By Theorem 5.1.2,

one of {x,y} is i. Let i = x. Then y = a or y = b. When y = a, (ab)(xy) = (ab)(ia) = (iba),

a contradiction. When y = b, (ab)(xy) = (ab)(ib) = (iab). Let i = y. Then x = a or
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x = b. When x = a, (ab)(xy) = (ab)(ai) = (iba), a contradiction. When x = b, (ab)(xy) =

(ab)(bi) = (ab)(ib) = (iab). Therefore, (xy) can only be (ib). Similarly, we can discuss other

situations. Therefore, (iab) could only be decomposed as follows, v = (iab) = (ia)(ab) =

(ab)(ib) = (ib)(ia). We have {(ia),( jb),(kc),(ld)} = {(ia),(ab),(ib)}, which is a contra-

diction to |{(ia),( jb),(kc),(ld)}|= 4. 2

Lemma 7.1.2 There are (n−1)! independent cross-edges between two different Hi’s in CKn

and a vertex of V (Hi) is adjacent to exactly one vertex of V (H j) for i, j ∈ {1,2, . . . ,n}.

Proof: We prove by contradiction. Let Cay(H,Sn) be decomposed as in the last position.

Without loss of generality, we discuss the situation between H1 and H2. Then the last position

of vertex in H1 is i while it is j in H2, where i, j ∈ {1, . . . ,n}. Since there is no 3-cycle in

CKn, we suppose v1 and v2 are two nonadjacent vertices in H1 and are adjacent to a common

vertex v3 in H2. Note that v3 is a transposition from the generating set, which includes n,

to be adjacent to the vertex in H1. Let it be (r,n). Since the n-th position of vertex in H1 is

i, we have i is on the r-th position in v3. Then we have v3(r,n) = v1 = v2, a contradiction.

Therefore, v3 is only adjacent to v1 in V (H1). By the arbitrariness of v1 and v3, we have that a

vertex of V (Hi) is adjacent to exactly one vertex of V (H j) for i, j ∈ {1,2, . . . ,n}. Combining

this with that there are (n−1)! vertices in Hi, we have that there are (n−1)! independent

cross-edges between two different Hi’s in CKn. 2

7.2 The Connectivity of Cayley Graphs Generated by Com-

plete Graphs

In this section we will examine the connectivity of CKn, which will help us determine the

nature connectivity and diagnosabilities of CKn.

Theorem 7.2.1 For n ≥ 3, the connectivity of CKn is n(n−1)
2 , i.e., κ(CKn) =

n(n−1)
2 .

Proof: We prove it by induction on n. When n = 3, it is easy to see that κ(CK3) =

n(n−1)
2 = 3 since CK3 is isomorphic to K3,3. We decompose CKn along the last position,
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denoted by Hi (i = 1, . . . ,n). Then Hi and CKn−1 are isomorphic. Let F be the faulty vertex

set in CKn, F ≤ n(n−1)
2 −1 and Fi = Hi∩F . When n = 4, without loss of generality, let |F1| ≥

|F2| ≥ |F3| ≥ |F4|. If 3≤ |F1| ≤ 5, we have F4 = /0. According to the Lemma 7.1.2, each vertex

in Hi is adjacent to a vertex in H4 = H4−F4, where i ∈ {1,2,3}. Then CK4−F is connected.

Assume |Fi| ≤ 2. Combining this with that Hi is isomorphic with CK3, Hi −Fi is connected.

Since |Ei, j(CK4)| = (n− 1)! = 6 > 4 ≥ |Fi|+ |Fj|, we have CK4[V (Hi −Fi)∪V (H j −Fj)]

is connected, where i, j ∈ {1,2,3,4}. Therefore, CK4 −F is connected and κ(CK4) ≥ 6.

Since δ (CK4) = 6 ≥ κ(CK4) ≥ 6, we have κ(CK4) = 6. When n = k−1, we assume that

κ(CKk−1) = δ (CKk−1) =
(k−1)(k−2)

2 . When n = k, let F ≤ k(k−1)
2 −1 and |F1| ≥ |F2| ≥ . . .≥

|Fk|. If (k−1)(k−2)
2 ≤ |F1| ≤ k(k−1)

2 −1, we have ∑
k
i=2 |Fi| ≤ (k−2), then Fk = /0. According

to the Lemma 7.1.2, each vertex in Hi is adjacent to a vertex in Hk = Hk − Fk, where

i ∈ {1, . . . ,k − 1}. Then CKk −F is connected. If |Fi| ≤ (k−1)(k−2)
2 − 1, by assumption,

Hi −Fi is connected. Since |Ei, j(CKk)|= (k−1)! > k2 −3k ≥ |Fi|+ |Fj| for k ≥ 4, we have

we have CKk[V (Hi −Fi)∪V (H j −Fj)] is connected, where i, j ∈ {1,2, . . . ,n}. Therefore,

CKk is connected and κ(CKk)≥ k(k−1)
2 . Since δ (CKk) =

k(k−1)
2 ≥ κ(CKk)≥ k(k−1)

2 , we have

κ(CKk) =
k(k−1)

2 . Therefore, κ(CKn) =
n(n−1)

2 . 2

7.3 The Nature Connectivity of Cayley Graphs Generated

by Complete Graphs

In this section we will determine the nature connectivity of CKn, which will help us to study

the diagnosabilities of CKn under PMC model and MM∗.

Lemma 7.3.1 The nature connectivity of the Cayley graph CK4 generated by the complete

graph K4 is not smaller than 10, i.e., κ∗(CK4)≥ 10.

Proof: We decompose CK4 along the last position, denoted by Hi (i = 1,2,3,4). Then

Hi and CK3 are isomorphic. The edges whose end vertices are in different Hi’s are called

the cross-edges with respect to the given decomposition. Note that each vertex is incident

to (n− 1) = 3 cross-edges and there are (n− 1)! = 6 independent cross-edges between
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two different Hi’s by Lemma 7.1.2. Let F be a nature cut of CK4 such that |F | ≤ 9 and

Fi = F ∩V (Hi). Without loss of generality, let |F1| ≥ |F2| ≥ |F3| ≥ |F4|.

Case 1. |F4|= 0.

Since each of V (Hi) for i ∈ {1,2,3} is adjacent to one vertex in H4 −F4 = H4, we have

that CK4 −F is connected, a contradiction to that F is a nature cut of CK4.

Case 2. |F4|= 1.

By Theorem 7.2.1, we have H4 −F4 is connected. Let F4 = {u}. Note that there is only

one vertex ui in Hi for {1,2,3} such that ui is adjacent to u. If ui ∈ F for i ∈ {1,2,3}, we have

that CK4[V (Hi−Fi)∪V (H4−F4)] is connected. Thus, CK4−F is connected, a contradiction

to that F is a nature cut of CK4. Then there is at least one ui /∈ F , without loss of generality,

let it be u1. Since F is a nature cut of CK4, we know that CK4 −F has no isolated vertex

and hence dCK4−F(u1) ≥ 1. Combining this with the fact that u1 is only adjacent to u in

H4, we have that there is a vertex u′1 in CK4 − (F ∪V (H4)) such that u′1 is adjacent to u1.

Moreover, there is no 3-cycle in CK4, which implies that u′1 is not adjacent to u. Therefore,

u′1 is adjacent to one vertex in H4 −F4 and CK4[V (H4 −F4)∪{u′1,u1}] is connected. For

other vertices in H1 −F1, each of them is adjacent to exactly one vertex in H4 −F4. Then we

have CK4[V (H4 −F4)∪V (H1 −F1)∪{u′1}] is connected. The cases of H2 −F2 and H3 −F3

are similar. From the above, we have CK4 −F is connected, a contradiction to that F is a

nature cut of CK4.

Case 3. |F4|= 2.

For |F | ≤ 5, by Theorem 7.2.1, we have that CK4 −F is connected, a contradiction to

that F is a nature cut of CK4. Therefore, let 6 ≤ |F | ≤ 9. Combining this with that |F1| ≥

|F2| ≥ |F3| ≥ |F4|, we have |F2|= |F3|= |F4|= 2 and 2 ≤ |F1| ≤ 3. Suppose |F1|= 2. Note

that Hi is isomorphic to CK3. By Theorem 7.2.1, CK3 −Fi is connected. Therefore, we have

Hi −Fi is connected. Since each of V (Hi) is adjacent to one vertex in H j for i, j ∈ {1,2,3,4}

and |Ei, j(CK4)| = (n− 1)! = 6 > 4 ≥ |Fi|+ |Fj|, we have CK4[V (Hi −Fi)∪V (H j −Fj)] is

connected. Therefore, CK4 −F is connected, a contradiction to that F is a nature cut of

CK4. Then suppose |F1| = 3. Assume that there is no isolated vertices in H1 −F1. Since

|E1,i(CK4)| = (n−1)! = 6 > 5 = |F1|+ |Fi|, we have that CK4[V (H1 −F1)∪V (Hi −Fi)] is
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connected. Therefore, we have CK4 −F is connected, a contradiction to that F is a nature

cut of CK4. Then there are isolated vertices in H1 −F1. Since H1 = K3,3, H1 −F1 has three

isolated vertices. Since there are no isolated vertex in CK4 −F , these isolated vertices in

H1−F1 are adjacent to vertices in CK4−F−H1, respectively. Since |Ei, j(CK4)|= (n−1)!=

6 > 4 ≥ |Fi|+ |Fj| for i, j ∈ {2,3,4}, we have CK4[V (Hi −Fi)∪V (H j −Fj)] is connected.

Therefore, CKn −F is connected, a contradiction to that F is a nature cut of CK4.

Therefore, F is not a nature cut of CK4 when |F | ≤ 9 and κ∗(CK4)≥ 10. 2

Lemma 7.3.2 The nature-connectivity of the Cayley graph CK5 generated by the complete

graph K5 is not smaller than 18, i.e., κ∗(CK5)≥ 18.

Proof: We decompose CK5 as in the last position, denoted by Hi (i = 1,2,3,4,5). Then

Hi and CK4 are isomorphic. The edges whose end vertices are in different Hi’s are called

the cross-edges with respect to the given decomposition. Note that each vertex is incident

to (n− 1) = 4 cross-edges and there are (n− 1)! = 24 independent cross-edges between

two different Hi’s by Lemma 7.1.2. Let F be a nature cut of CK5 such that |F | ≤ 17 and

Fi = F ∩V (Hi). Without loss of generality, let |F1| ≥ |F2| ≥ |F3| ≥ |F4| ≥ |F5|.

Case 1. |F5|= 0.

Since each of V (Hi) for i ∈ {1,2,3,4} is adjacent to one vertex in H5−F5 = H5, we have

that CK5 −F is connected, a contradiction to that F is a nature cut of CK5.

Case 2. |F5|= 1.

By Theorem 7.2.1, we have H5 −F5 is connected. Let F5 = {u}. Note that there is only

one vertex ui in Hi for {1,2,3,4} such that ui is adjacent to u. If ui ∈ F for i ∈ {1,2,3,4},

we have that CK5[V (Hi −Fi)∪V (H5 −F5)] is connected. Thus, CK5 −F is connected, a

contradiction to that F is a nature cut of CK5. Then there is at least one ui /∈ F , without

loss of generality, let it be u1. Since F is a nature cut of CK5, we have that CK5 −F has

no isolated vertex and hence dCK5−F(u1)≥ 1. Combining this with that u1 is only adjacent

to u in H5, we have there is a vertex u′1 in CK5 − (F ∪V (H5)) such that u′1 adjacent to u1.

Moreover, there is no 3-cycle in CK5, which implies that u′1 is not adjacent to u. Therefore,

u′1 is adjacent to one vertex in H5 −F5 and CK5[V (H5 −F5)∪{u′1,u1}] is connected. For
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other vertices in H1 −F1, each of them is adjacent to exactly one vertex in H5 −F5. Then we

have CK5[V (H5−F5)∪V (H1−F1)∪{u′1}] is connected. The case of Hi−Fi for i ∈ {2,3,4}

is similar. From the above, we have CK5 −F is connected, a contradiction to that F is nature

cut of CK5.

Case 3. |F5|= 2.

It is easy to see that |F1|+ |F2| ≤ 17− 3× 2 = 11, which implies only F1 could have

|F1| ≥ 6 = κ(CK4) by Theorem 7.2.1. On the other hand, we have |F1| ≤ 17− 4× 2 =

9 < 10 ≤ κ∗(CK4) by Lemma 7.3.1. Suppose 6 ≤ |F1| ≤ 9. Note that |Fi| < 6 for i ∈

{2,3,4,5}. We have that Hi −Fi for i ∈ {2,3,4,5} is connected by Theorem 7.2.1. Since

|Ei, j(CK5)| = (n − 1)! = 24 > 7 ≥ |Fi|+ |Fj|, we have CK5[V (Hi − Fi)∪V (H j − Fj)] is

connected, where i, j ∈ {2,3,4,5}. Suppose that H1 −F1 has no isolated vertices. Since

|E1,i(CK5)| = (n− 1)! = 24 > 11 ≥ |F1|+ |Fi|, we have CK5[V (H1 −F1)∪V (Hi −Fi)] is

connected. Therefore, we have CK5−F is connected, a contradiction to that F is nature cut of

CK5. Then there are isolated vertices in H1−F1. Since there is no isolated vertex in CK5−F ,

these isolated vertices in H1 −F1 are adjacent to vertices in CK5 −F −V (H1), respectively.

On the other hand, we suppose that there is a component G1 in H1−F1 such that |V (G1)|= 2.

Since |NH1(V (G1))| = (n− 1)(n− 2)− 2 = 10 > 9 ≥ |F1|, a contradiction. Therefore, we

have |V (G1)| ≥ 3. Since 3(n− 1) = 12 > 17− 6 = 11, we have CKn[V (G1)∪V (Hi)] is

connected for at least one i ∈ {2,3,4,5}. The cases of other components in H1 −F1 are

similar. From the above, CK5 −F is connected, a contradiction to that F is nature cut of CK5.

Case 4. |F5|= 3.

It is easy to see that |F1| ≤ 17− 4× 3 = 5. Then we have |Fi| ≤ κ(CK4) =
n(n−1)

2 = 6

for i ∈ {1,2,3,4,5} by Theorem 7.2.1. Thus, Hi −Fi is connected. On the other hand,

|Ei, j(CK5)| = (n − 1)! = 24 > 8 ≥ |Fi|+ |Fj|, we have CK5[V (Hi − Fi)∪V (H j − Fj)] is

connected. Therefore, CK5 −F is connected, a contradiction to that F is nature cut of CK5.

Therefore, F is not a nature cut of CK5 when |F | ≤ 17 and κ∗(CK5)≥ 18. 2

Theorem 7.3.3 For n ≥ 4, the nature-connectivity of the Cayley graph CKn generated by

the complete graph Kn is n2 −n−2, i.e., κ∗(CKn) = n2 −n−2.
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Proof: By Proposition 7.1.1, the girth of CKn is 4. By Theorem 2.4.3, let (12) ∈ E(Kn)

and A = {(1),(12)}. Then CKn[A] = K2. Since CKn has no 3-cycles and its regularity

is n(n−1)
2 , we have |NCKn(A)| = n(n− 1)− 2 = n2 − n− 2. Let F1 = NCKn(A) and F2 =

A∪NCKn(A).

Note that |N((1)) \ (12)| = n(n−1)
2 − 1. Let a ∈ (N((1)) \ (12)). For any x ∈ Sn \F2,

suppose that a is adjacent to x. Since CKn is bipartite, x is not adjacent to any vertex of

(N((12)) \ (1)). Therefore, dCKn[Sn\F2](x) ≥
n(n−1)

2 − (n(n−1)
2 − 1) = 1 and δ (CKn −F1 −

F2)≥ 1. Then F1 is a nature cut of CKn. Therefore, K(1)(CKn)≤ n2 −n−2. It is sufficient

to show that F is not a nature cut of CKn when |F | ≤ n2 −n−3.

We decompose CKn along the last position, denoted by Hi (i = 1,2, . . . ,n). Then Hi and

CKn−1 are isomorphic. The edges whose end vertices are in different Hi’s are called the

cross-edges with respect to the given decomposition. Note that each vertex is incident to

(n−1) cross-edges and there are (n−1)! independent cross-edges between two different

Hi’s by Lemma 7.1.2. Let Fi = F ∩V (Hi). Without loss of generality, let |F1| ≥ |F2| ≥ . . .≥

|Fn−1| ≥ |Fn|. This claim is shown by induction on n. For 4 ≤ n ≤ 5, by Lemmas 7.3.1 and

7.3.2, F is not a nature cut of CKn when |F | ≤ n2 −n−3. Assume that F is not a nature cut

of CKn−1 when |F | ≤ (n−1)2 − (n−1)−3. Now consider CKn when n ≥ 6. Suppose, on

the contrary, that F is a nature cut of CKn when |F | ≤ n2 −n−3. We discuss the following

cases.

Case 1. |F1|< (n−1)(n−2)
2 .

Since |F1| ≥ |F2| ≥ . . . ≥ |Fn−1| ≥ |Fn| and |F1| < (n−1)(n−2)
2 , we have |Fi| < (n−1)(n−2)

2

for every i. By Theorem 7.2.1, Hi −Fi is connected. Since there are (n−1)! independent

cross-edges between two Hi’s and (n−1)! ≥ 2 · (n−1)(n−2)
2 > |Fi|+ |Fj|, we have CKn[V (Hi−

Fi)∪V (H j −Fj)] is connected. Therefore, CKn −F is connected, a contradiction to that F is

nature cut of CKn.

Case 2. (n−1)(n−2)
2 ≤ |F1| ≤ (n−1)2 − (n−1)−3.

Since 2 · (n−1)(n−2)
2 < n2 − n − 3 < 3 · (n−1)(n−2)

2 for n ≥ 6, only F2 could have that
(n−1)(n−2)

2 ≤ |F2| ≤ (n−1)2−(n−1)−3, other Fi for i∈ {3, . . . ,n} has that |Fi|< (n−1)(n−2)
2 .

Case 2.1. (n−1)(n−2)
2 ≤ |F2| ≤ (n−1)2 − (n−1)−3.
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Since (n−1)(n−2)
2 ≤ |Fi| ≤ (n−1)2−(n−1)−3 for i ∈ {1,2}, by the inductive hypothesis,

Hi −Fi either has isolated vertices or is connected.

Case 2.1.1. Neither H1 −F1 nor H2 −F2 has isolated vertices.

In this case, each of {H1 −F1,H2 −F2} is connected. Since |F \ (F1 ∪F2)|< (n−1)(n−2)
2 ,

similarly to Case 1, CKn[V (Hi − Fi)∪V (H j − Fj)] is connected, where i, j ∈ {3, . . . ,n}.

Since |V (H1−F1)|(n−2)≥ [(n−1)!− (n−1)2+(n−1)+3](n−2)> (n2−n−3)− (n−

1)(n−2)≥ |F \ (F1 ∪F2)|, we have CKn[V (H1 −F1)∪V (Hi −Fi)] is connected for at least

one i ∈ {3, . . . ,n}. The case of H2 −F2 is similar. Therefore, CKn −F is connected, a

contradiction to that F is a nature cut of CKn.

Case 2.1.2. One of H1 −F1 and H2 −F2 has isolated vertices.

Since one of H1 −F1 and H2 −F2 has isolated vertices, without loss of generality, let

it be H1 −F1. According to Proposition 7.1.2, two vertices have at most three common

neighbor vertices. Note that 2 · (n−1)(n−2)
2 − 3 = (n− 1)2 − (n− 1)− 3. Then H1 −F1 has

at most two isolated vertices. Suppose that there are two isolated vertices in H1 −F1, let

them be a and b. Since F is a nature cut of CKn, there is no isolated vertex in CKn −F and

neither a nor b is the isolated vertex in CKn −F . Note that |F1| = (n− 1)2 − (n− 1)− 3.

Since |F | − |F1| − |F2| ≤ n2 − n − 3 − (n − 1)2 + (n − 1) + 3 − (n−1)(n−2)
2 < (n − 2) and

|F1| ≥ |F2| ≥ . . . ≥ |Fn|, we have |Fn| = 0. Since each vertex of CKn[
⋃n−1

i=1 V (Hi −Fi)] is

adjacent to one vertex in Hn −Fn = Hn, CKn −F is connected, a contradiction to that F

is a nature cut of CKn. Then H1 −F1 has at most one isolated vertex. If there is only one

isolated vertex in H1−F1, let it be a and the components in H1−F1−a be G1,G2, . . . ,Gk for

k ≥ 1. Since F is a nature cut of CKn, a is adjacent to one vertex in Hi −Fi for at least one

i ∈ {2, . . . ,n}. For Gr (1 ≤ r ≤ k), we have |V (Gr)| ≥ 2. Since (n2−n−3−2 · (n−1)(n−2)
2 ) =

2n− 5 < 2(n− 2) ≤ |N(V (Gr)) \ (V (H1)∪V (H2))|, we have CKn[V (Gr)∪V (Hi −Fi)] is

connected for at least one i ∈ {3, . . . ,n}. The cases of other components in H1 −F1 are

similar. Similarly to the proof of Case 1, we have CKn[V (Hi−Fi)∪V (H j −Fj)] is connected

for i, j ∈ {3, . . . ,n}. Similarly to the proof of Case 2.1.1, CKn[V (H2 −F2)∪V (Hi −Fi)] is

connected for at least one i ∈ {3, . . . ,n}. Therefore, CKn −F is connected, a contradiction to

that F is a nature cut of CKn.
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Case 2.1.3. Each of {H1 −F1,H2 −F2} has isolated vertices.

Suppose that H1 − F1 has two isolated vertices. Then |F1| = (n− 1)2 + (n− 1) + 3.

Since |F | − |F1| − |F2| ≤ n2 − n − 3 − (n − 1)2 + (n − 1) + 3 − (n−1)(n−2)
2 < (n − 2) and

|F1| ≥ |F2| ≥ . . . ≥ |Fn|, we have |Fn| = 0. Since each vertex of CKn[
⋃n−1

i=1 V (Hi −Fi)] is

adjacent to one vertex in Hn−Fn = Hn, we have CKn−F is connected, a contradiction to that

F is a nature cut of CKn. Then H1 −F1 has one isolated vertex. If H2 −F2 has two isolated

vertices, similarly we have |Fn|= 0. Since each vertex of CKn[
⋃n−1

i=1 V (Hi −Fi)] is adjacent

to one vertex in Hn −Fn = Hn, we have CKn −F is connected, a contradiction to that F is

a nature cut of CKn. Then each of {H1 −F1,H2 −F2} has one isolated vertex. Let them be

a and b. Let the components in H1 −F1 −a be G1
1,G

1
2, . . . ,G

1
k for k ≥ 1 and in H2 −F2 −b

be G2
1,G

2
2, . . . ,G

2
l for l ≥ 1. Then we have |V (G1

r )| ≥ 2 and |V (G2
s )| ≥ 2 for 1 ≤ r ≤ k and

1 ≤ s ≤ l. Note that there is no isolated vertex in CKn −F . If a is not adjacent to b, then a is

adjacent to one vertex in Hi −Fi for at least one i ∈ {3, . . . ,n} or one vertex in G2
s for one s

(1≤ s≤ l), and b is adjacent to one vertex in Hi−Fi for at least one i∈{3, . . . ,n} or one vertex

in G1
r for one r (1 ≤ r ≤ k). For G1

r , since (n2−n−3−2 · (n−1)(n−2)
2 ) = 2n−5 < 2(n−2)≤

|N(V (Gr))\(V (H1)∪V (H2))|, we have CKn[V (G1
r )∪V (Hi−Fi)] is connected for at least one

i∈ {3, . . . ,n}. Similarly, CKn[V (G2
s )∪V (Hi)] is connected for at least one i∈ {3, . . . ,n}. The

cases of other components in H1 −F1 and H2 −F2 are similar. Similarly to the proof of Case

1, we have that CKn[V (Hi −Fi)∪V (H j −Fj)] is connected for i, j ∈ {3, . . . ,n}. Therefore,

CKn −F is connected, a contradiction to that F is a nature cut of CKn. Suppose that a is

adjacent to b. Similarly to the proof before, CKn[V (G1
r )∪V (Hi −Fi)] and CKn[V (G2

s )∪

V (Hi −Fi)] are connected for at least one i ∈ {3, . . . ,n} and CKn[V (Hi −Fi)∪V (H j −Fj)] is

connected for i, j ∈ {3, . . . ,n}. The cases of other components in H1 −F1 and H2 −F2 are

similar. To cut all the cross-edges of CKn[{a,b}], we need 2(n−2) faulty vertices in Hi’s,

where i ∈ {3, . . . ,n}. Since |F \ (F1 ∪F2)| ≤ n2 −n−3− (n−1)(n−2) = 2n−5. Then we

have CKn[V (Hi−Fi)∪{a,b}] is connected for at least one i ∈ {3, . . . ,n}. Therefore, CKn−F

is connected, a contradiction to that F is a nature cut of CKn.

Case 2.2. |F2|< (n−1)(n−2)
2 .

Case 2.2.1. H1 −F1 has no isolated vertex.
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By the inductive hypothesis, H1 −F1 is connected. Similarly to the proof of Case 2.1.1,

we have that CKn[V (H1 −F1)∪V (Hi −Fi)] for at least one i ∈ {2, . . . ,n}. Similarly to the

proof of Case 1, we have CKn[V (Hi −Fi)∪V (H j −Fj)] is connected for i, j ∈ {2, . . . ,n}.

Therefore, CKn −F is connected, a contradiction to that F is a nature cut of CKn.

Case 2.2.2. H1 −F1 has isolated vertices.

According to Proposition 7.1.2, two vertices have at most three common neighbor vertices.

Note that 2 · (n−1)(n−2)
2 −3 = (n−1)2 − (n−1)−3. Then H1 −F1 has at most two isolated

vertices. Suppose that H1 −F1 has two isolated vertices, a and b. Since there is no isolated

vertex in CKn −F , we have that neither a nor b is the isolated vertex in CKn −F . Then each

of {a,b} is adjacent to at least one vertex of Hi−Fi, where i ∈ {2, . . . ,n}. Let the components

in H1 −F1 − a− b be G1,G2, . . . ,Gk for k ≥ 1. We have |V (Gr)| ≥ 2 for 1 ≤ r ≤ k. Let

|V (G1)| = 2. Since |NH1(V (G1))| = (n−1)(n−2)−2 = n2 −3n > (n−1)2 − (n−1)−3,

a contradiction. Therefore, we have |V (Gr)| ≥ 3. Since 3(n−1)> n2 −n−3− [(n−1)2 −

(n− 1)− 3], we have CKn[V (Gr)∪V (Hi −Fi)] is connected for at least one i ∈ {2, . . . ,n}.

The cases of other components in H1 −F1 are similar. Similarly to the proof of Case 1, we

have that CKn[V (Hi−Fi)∪V (H j−Fj)] is connected for i, j ∈ {2, . . . ,n}. Therefore, CKn−F

is connected, a contradiction to that F is a nature cut of CKn. Then there is only one isolated

vertex in H1 −F1, let it be a and the components in H1 −F1 −a be G1,G2, . . . ,Gk for k ≥ 1.

Note that CKn −F has no isolated vertex. Then a is adjacent to one vertex in Hi −Fi for

at least one i ∈ {2, . . . ,n}. For Gr we have |V (Gr)| ≥ 2, where 1 ≤ r ≤ k. Let |V (G1)|= 2.

Since |NH1(V (G1))|= (n−1)(n−2)−2 = n2−3n > (n−1)2− (n−1)−3, a contradiction.

Therefore, we have |V (Gr)| ≥ 3. Since 3(n− 1) > n2 − n− 3− [(n− 1)2 − (n− 1)− 3],

we have CKn[V (Gr)∪V (Hi −Fi)] is connected for at least one i ∈ {2, . . . ,n}. The cases

of other components in H1 −F1 are similar. Similarly to the proof of Case 1, we have

that CKn[V (Hi −Fi)∪V (H j −Fj)] is connected for i, j ∈ {2, . . . ,n}. Therefore, CKn −F is

connected, a contradiction to that F is a nature cut of CKn.

Case 3. (n−1)2 − (n−1)−3 < |F1| ≤ n2 −n−3 .

Since 2[(n−1)2 − (n−1)−3] = 2n2 −6n−2 > n2 −n−3 for n ≥ 6, there is only one

F1 such that (n−1)2 − (n−1)−3 ≤ |F1| ≤ n2 −n−3.
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For other Fi’s (i ∈ {2, . . . ,n}), since |F −F1|< n2 −n−3− (n2 −3n−1) = 2n−2, i.e.,

|F −F1| ≤ 2n−3, we have 2n−3 < (n−1)(n−2)
2 for n ≥ 6. Therefore, there is no Fi such that

(n−1)(n−2)
2 ≤ |Fi| ≤ (n− 1)2 − (n− 1)− 3, where i ∈ {2, . . . ,n} and n ≥ 6. Thus, we have

|Fi|< (n−1)(n−2)
2 for every i ∈ {2, . . . ,n}.

Similarly to the proof of Case 1, we have CKn[
⋃n

i=2V (Hi −Fi)] is connected. Suppose

that H1−F1 is connected. Since |E1,i(CKn)|= (n−1)! > n2−n−3+ (n−1)(n−2)
2 ≥ |F1|+ |Fi|

for i ∈ {2, . . . ,n}, we have CKn[V (H1 −F1)∪V (Hn −Fn)] is connected and hence CKn −F

is connected, a contradiction to that F is a nature cut of CKn. Then suppose that F1 is a nature

cut of H1, let the components in H1 −F1 be G1,G2, . . . ,Gk for k ≥ 1. Note that |V (Gr)| ≥ 2

for 1 ≤ r ≤ k. Then the number of cross-edges for each Gr are at least 2(n−1). Note that

|F −F1| ≤ 2n−3 < 2(n−1), we have CKn[V (Gr)∪V (Hi−Fi)] is connected for at least one

i ∈ {2, . . . ,n}. The cases of other components in H1 −F1 are similar. Therefore, CKn −F is

connected, a contradiction to that F is a nature cut of CKn. If H1 −F1 has isolated vertices,

let them be {v1, . . . ,vt}, where t ≥ 1. Since 2 · n(n−1)
2 −3 = n2 −n−3, there are at most two

isolated vertices in CKn −F . Note there is no isolated vertex in CKn −F . Then each isolated

vertex in H1 −F1 is adjacent to one vertex of Hi −Fi for at least one i ∈ {2, . . . ,n}. Let the

components in H1 −F1 −
⋃t

i=1 vi be G1,G2, . . . ,Gk for k ≥ 1. Then we have |V (Gr)| ≥ 2,

where 1 ≤ r ≤ k. Since |F | − |F1| ≤ n2 − n− 3− (n− 1)2 +(n− 1)+ 3− 1 = 2n− 3 <

2(n−1)≤ |N(V (Gr))\ (V (H1)|, we have CKn[V (Gr)∪V (Hi −Fi)] is connected for at least

one i ∈ {2, . . . ,n}. The cases of other components in H1 −F1 are similar. Similarly to the

proof of Case 1, we have CKn[V (Hi −Fi)∪V (H j −Fj)] is connected for i, j ∈ {2, . . . ,n}.

Therefore, CKn −F is connected, a contradiction to that F is a nature cut of CKn.

By Cases 1–3, F is not a nature cut of CKn if |F | ≤ n2−n−3. Therefore, |F | ≥ n2−n−2

if F is a nature cut of CKn. Combining this with K(1)(CKn)≤ n2−n−2, we have κ∗(CKn) =

n2 −n−2. 2
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7.4 The Nature Connectivity and Diagnosability of Cayley

Graphs Generated by Complete Graphs under PMC

Model

In this section, we will study the nature diagnosability of the Cayley graph CKn generated by

the complete graph Kn under the PMC model.

Firstly we give an important lemma which will be used in the proof to determine the

nature diagnosability of CKn under PMC Model, where n ≥ 4.

Lemma 7.4.1 Let A = {(1),(12)} and CKn be defined as above. If n ≥ 4, F1 = NCKn(A),

F2 = A∪NCKn(A), then |F1|= n2−n−2, |F2|= n2−n, δ (CKn−F1)≥ 1, and δ (CKn−F2)≥

1.

Proof: By A = {(1),(12)}, we have CKn[A] ∼= CK2 = K2. Since CKn has no 3-cycles,

|NCKn(A)|= n2−n−2. Thus from calculating, we have |F1|= n2−n−2, |F2|= |A|+ |F1|=

n2 −n.

In F1 we will prove at most three vertices which are adjacent to one vertex x in Sn \F2,

i.e., |NCKn(x)∩F2)| ≤ 3 for any x ∈ Sn \F2. Note that CKn −F1 has two parts CKn −F2 and

CK2 (for convenience). Since F1 = NCKn(A), x is not adjacent to each vertex of V (CK2) = A.

If |N(x)∩N((1))| ̸= 0, then |N(x)∩N((12))|= 0 by Theorem 7.1.1. By Proposition 7.1.2,

we have that |N(x)∩N((1))| ≤ 3. Therefore, δ (CKn −F2)≥ n(n−1)
2 −3. CKn −F1 has two

parts CKn−F2 and CK2 (for convenience). Note that δ (CK2) = 1. When n ≥ 4, we have that

δ (CKn −F2)≥ n(n−1)
2 −3 ≥ 1. Therefore, δ (CKn −F1)≥ 1 for n ≥ 4. 2

Secondly we give the upper bound of the nature diagnosability of the Cayley graph CKn

generated by the complete graph Kn under the PMC model.

Lemma 7.4.2 Let n ≥ 4. Then the nature diagnosability of the Cayley graph CKn generated

by the complete graph Kn under the PMC model is less than or equal to n2 − n− 1, i.e.,

t1(CKn)≤ n2 −n−1.
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Proof: Let A be defined as above, and let F1 = NCKn(A), F2 = A∪NCKn(A) (See Fig. 5.2).

By Lemma 7.4.1, |F1| = n2 − n− 2, |F2| = n2 − n, δ (CKn −F1) ≥ 1 and δ (CKn −F2) ≥ 1.

Therefore, F1 and F2 are both nature faulty sets of CKn with |F1|= n2−n−2 and |F2|= n2−n.

Since A=F1 △F2 and NCKn(A)=F1 ⊂F2, there is no edge of CKn between V (CKn)\(F1∪F2)

and F1 △ F2. By Theorem 5.2.2, we can see that CKn is not nature (n2 − n)-diagnosable

under PMC model. Hence, by the definition of the nature diagnosability, we conclude that

the nature diagnosability of CKn is less than (n2 −n), i.e., t1(CKn)≤ n2 −n−1. 2

Thirdly we prove the lower bound of the nature diagnosability of the Cayley graph CKn

generated by the complete graph Kn under the PMC model.

Lemma 7.4.3 Let n ≥ 4. Then the nature diagnosability of the Cayley graph CKn generated

by the complete graph Kn under the PMC model is more than or equal to n2 − n− 1, i.e.,

t1(CKn)≥ n2 −n−1.

Proof: By the definition of the nature diagnosability, it is sufficient to show that CKn

is nature (n2 − n − 1)-diagnosable. By Theorem 5.2.2, to prove CKn is nature (n2 −

n− 1)-diagnosable, it is equivalent to prove that there is an edge uv ∈ E(CKn) with u ∈

V (CKn)\(F1 ∪F2) and v ∈ F1 △ F2 for each distinct pair of nature faulty subsets F1 and F2 of

V (CKn) with |F1| ≤ n2 −n−1 and |F2| ≤ n2 −n−1.

We prove this by contradiction. Suppose that there are two distinct nature faulty subsets

F1 and F2 of V (CKn) with |F1| ≤ n2 − n− 1 and |F2| ≤ n2 − n− 1, but the vertex set pair

(F1,F2)does not satisfy the condition in Theorem 5.2.2, i.e., there are no edges between

V (CKn)\(F1 ∪F2) and F1 △ F2. Without loss of generality, assume that F2 \F1 ̸= /0. Suppose

V (CKn) = F1 ∪ F2. By the definition of CKn, |F1 ∪ F2| = |Sn| = n!. It is obvious that

n! > 2(n2 − n− 1) for n ≥ 4.Since n ≥ 4, we have that n! = |V (CKn)| = |F1 ∪F2| = |F1|+

|F2|− |F1 ∩F2| ≤ |F1|+ |F2| ≤ 2(n2 −n−1), a contradiction.Therefore, V (CKn) ̸= F1 ∪F2.

Since there are no edges between V (CKn) \ (F1 ∪F2) and F1 △ F2, and F1 is a nature

faulty set, CKn −F1 has two parts CKn −F1 −F2 and CKn[F2 \F1] (for convenience). Thus,

δ (CKn −F1 −F2) ≥ 1 and δ (CKn[F2 \F1]) ≥ 1. Similarly, δ (CKn[F1 \F2]) ≥ 1 when F1 \

F2 ̸= /0. Therefore, F1 ∩F2 is also a nature faulty set. Since there are no edges between
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V (CKn −F1 −F2) and F1 △ F2, F1 ∩F2 is a nature cut. Since n ≥ 4, by Theorem 7.3.3,

|F1 ∩F2| ≥ n2 − n− 2. Since δ (CKn[F2 \F1]) ≥ 1, |F2\F1| ≥ 2 holds. Therefore, |F2| =

|F2\F1|+ |F1∩F2| ≥ 2+n2−n−2= n2−n, which contradicts with that |F2| ≤ n2−n−1. Let

F1 \F2 = /0. Then F1 ⊆ F2. Since F1 is a nature set of CKn, we have δ (CKn[F2 \F1])≥ 1 and

δ (CKn−F1−F2)≥ 1. Since there are no edges between V (CKn−F1−F2) and CKn[F2 \F1],

we have that F1 is a nature cut of CKn. Therefore, |F2|= |F2\F1|+ |F1∩F2|= |F2\F1|+ |F1| ≥

2+ n2 − n− 2 = n2 − n, which contradicts with that |F2| ≤ n2 − n− 1. So CKn is nature

(n2 −n−1)-diagnosable. By the definition of t1(CKn), t1(CKn)≥ n2 −n−1. 2

Combining Lemma 7.4.2 and 7.4.3, we have the following theorem.

Theorem 7.4.4 Let n≥ 4. Then the nature diagnosability of the Cayley graph CKn generated

by the complete graph Kn under PMC model is n2 −n−1.

7.5 The Nature Connectivity and Diagnosability of Cay-

ley Graphs Generated by Complete Graphs under the

MM∗ Model

In this section, we will study the nature diagnosability of the Cayley graph CKn generated by

the complete graph Kn under the MM∗ model.

Firstly we give the upper bound of its nature diagnosability under the MM∗ model.

Lemma 7.5.1 Let n ≥ 4. Then the nature diagnosability of the Cayley graph CKn generated

by the complete graph Kn under the MM∗ model is less than or equal to n2 − n− 1, i.e.,

t1(CKn)≤ n2 −n−1.

Proof: Let A, F1 and F2 be defined in Lemma 7.4.1 (See Fig. 5.2). By Lemma 7.4.1,

|F1| = n2 − n− 2, |F2| = n2 − n, δ (CKn −F1) ≥ 1 and δ (CKn −F2) ≥ 1. So both F1 and

F2 are nature faulty sets. By the definitions of F1 and F2, F1 △ F2 = A. Note F1 \F2 = /0,

F2 \F1 = A and (V (CKn) \ (F1 ∪F2))∩A = /0. Therefore, both F1 and F2 does not satisfy
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any one condition in Theorem 5.3.2, and CKn is not nature (n2 − n)-diagnosable. Hence,

t1(CKn)≤ n2 −n−1. The proof is completed. 2

Then we prove the lower bound of the nature diagnosability of CKn under the MM∗

model.

Lemma 7.5.2 Let n ≥ 5. Then the nature diagnosability of the Cayley graph CKn generated

by the complete graph Kn under the MM∗ model is more than or equal to n2 − n− 1, i.e.,

t1(CKn)≥ n2 −n−1.

Proof: By the definition of the nature diagnosability, it is sufficient to show that CKn is

nature (n2 −n−1)-diagnosable.

By Theorem 5.3.2, suppose, on the contrary, that there are two distinct nature faulty

subsets F1 and F2 of CKn with |F1| ≤ n2 −n−1 and |F2| ≤ n2 −n−1, but the vertex set pair

(F1,F2) does not satisfy any one condition in Theorem 5.3.2. Without loss of generality,

assume that F2 \F1 ̸= /0. Similarly to the discussion on V (CKn) ̸= F1 ∪F2 in Lemma 7.4.3,

we can deduce V (CKn) ̸= F1 ∪F2. Therefore, V (CKn) ̸= F1 ∪F2.

Claim I. CKn −F1 −F2 has no isolated vertex.

Suppose, on the contrary, that CKn −F1 −F2 has at least one isolated vertex w. Since

F1 is a nature faulty set, there is a vertex u ∈ F2 \F1 such that u is adjacent to w. Since

the vertex set pair (F1,F2) does not satisfy any condition in Theorem 5.3.2, there is at

most one vertex u ∈ F2 \F1 such that u is adjacent to w. Thus, there is just one vertex

u ∈ F2 \F1 such that u is adjacent to w. Similarly, we can deduce that there is just one

vertex v ∈ F1 \F2 such that v is adjacent to w when F1 \F2 ̸= /0. Let W ⊆ Sn \ (F1 ∪F2) be

the set of isolated vertices in CKn[Sn \ (F1 ∪F2)], and let H be the subgraph induced by

the vertex set Sn \ (F1 ∪F2 ∪W ). Then for any w ∈ W , there are n(n−1)
2 − 2 neighbors in

F1 ∩F2 when F1 \F2 ̸= /0. Since |F2| ≤ n2 − n− 1, we have ∑w∈W |NCKn[(F1∩F2)∪W ](w)| =

|W |(n(n−1)
2 −2)≤ ∑v∈F1∩F2 dCKn(v) = |F1 ∩F2|n(n−1)

2 ≤ (|F2|−1)n(n−1)
2 ≤ (n−2)(n−1)n(n+1)

2 .

It follows that |W | ≤ (n−2)(n−1)n(n+1)
n2−n−4 ≤ (n−2)(n−1)n(n+1)

(n−2)(n−1) = n(n+ 1) for n ≥ 5. Note |F1 ∪

F2| = |F1|+ |F2|− |F1 ∩F2| ≤ 2(n2 − n− 1)− n(n−1)
2 + 2 = 3

2n(n− 1). Suppose V (H) = /0.

Then n! = |Sn|= |V (CKn)|= |F1 ∪F2|+ |W | ≤ 3
2n(n−1)+n(n+1). This is a contradiction



7.5 The Nature Connectivity and Diagnosability of Cayley Graphs Generated by Complete
Graphs under the MM∗ Model 96

to n ≥ 5. So V (H) ̸= /0 when n ≥ 5. Since the vertex set pair (F1,F2)does not satisfy the

condition (1) of Theorem 5.3.2, and any vertex of V (H) is not isolated in H, we deduce

that there is no edge between V (H) and F1 △ F2. Thus, F1 ∩F2 is a vertex cut of CKn and

δ (CKn − (F1 ∩F2))≥ 1, i.e., F1 ∩F2 is a nature cut of CKn. By Theorem 7.3.3, |F1 ∩F2| ≥

n2 − n− 2. Because |F1| ≤ n2 − n− 1, |F2| ≤ n2 − n− 1, and neither F1 \F2 nor F2 \F1 is

empty, we have |F1 \F2|= |F2 \F1|= 1. Let F1 \F2 = {v1} and F2 \F1 = {v2}. Then for any

vertex w ∈W , w is adjacent to v1 and v2. According to Proposition 7.1.2, there are at most

three common neighbors for any pair of vertices in CKn, it follows that there are at most

three isolated vertices in CKn −F1 −F2.

Suppose that there is exactly one isolated vertex v in CKn −F1 −F2. Let v1 and v2 be

adjacent to v. Then NCKn(v)\{v1,v2} ⊆ F1 ∩F2. Since CKn contains no triangle, it follows

that NCKn(v j) \ {v} ⊆ F1 ∩F2 and [NCKn(v) \ {v1,v2}]∩ [NCKn(v j) \ {v}] = /0 for j ∈ {1,2}.

By Proposition 7.1.2, there are at most three common neighbors for any pair of vertices in

CKn. Thus, it follows that |
⋂2

j=1[NCKn(v j)\{v}]| ≤ 2. Thus, |F1∩F2| ≥ |NCKn(v)\{v1,v2}|+

∑
2
j=1 |NCKn(v j) \ {v}|− |

⋂2
j=1[NCKn(v j) \ {v}]| = n(n−1)

2 − 2+ 2(n(n−1)
2 − 1)− 2 = 3

2n(n−

1)−6. Since |F2| = |F2 \F1|+ |F1 ∩F2| ≥ 1+ 3
2n(n−1)−6 = 3

2n(n−1)−5 > n2 −n−1,

where n ≥ 5, which contradicts |F2| ≤ n2 −n−1.

Suppose that there are exactly two isolated vertices v′1 and v′2 in CKn −F1 −F2. Let

v1 and v2 be adjacent to v′1 and v′2, respectively. Then NCKn(v
′
i) \ {v1,v2} ⊆ F1 ∩F2 for

i ∈ {1,2}. Since CKn contains no triangle, it follows that NCKn(v j) \ {v′1,v
′
2} ⊆ F1 ∩F2,

[NCKn(v
′
i) \ {v1,v2}]∩ [NCKn(v j) \ {v′1,v

′
2}] = /0, where i, j ∈ {1,2}. By Proposition 7.1.2,

there are at most three common neighbors for any pair of vertices in CKn. Thus, it fol-

lows that |
⋂2

j=1[NCKn(v j) \ {v′1,v
′
2}]| = 1. Thus, |F1 ∩ F2| ≥ ∑

2
i=1 |NCKn(v

′
i) \ {v1,v2}|+

∑
2
j=1 |NCKn(v j)\{v′1,v

′
2}|−|

⋂2
j=1[NCKn(v j)\{v′1,v

′
2}]|= 4(n(n−1)

2 −2)−1 = 2n(n−1)−9.

It follows that |F2| = |F2 \F1|+ |F1 ∩F2| ≥ 2n(n− 1)− 8 > n2 − n− 1 for n ≥ 5, which

contradicts |F2| ≤ n2 −n−1.

Suppose that there are exactly three isolated vertices v′i in CKn −F1 −F2 for i ∈ {1,2,3}.

Let v1 and v2 be adjacent to v′i, respectively. Then NCKn(v
′
i)\{v1,v2} ⊆ F1 ∩F2. Since CKn

contains no triangle, it follows that NCKn(v j)\{v′1,v
′
2,v

′
3} ⊆ F1 ∩F2, [NCKn(v

′
i)\{v1,v2}]∩
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[NCKn(v j) \ {v′1,v
′
2,v

′
3}] = /0, where i ∈ {1,2,3} and j ∈ {1,2}. By Proposition 7.1.2,

there are at most three common neighbors for any pair of vertices in CKn. Thus, it fol-

lows that |
⋂2

j=1[NCKn(v j) \ {v′1,v
′
2,v

′
3}]| = 0. Thus, |F1 ∩F2| ≥ ∑

3
i=1 |NCKn(v

′
i) \ {v1,v2}|+

∑
2
j=1 |NCKn(v j)\{v′1,v

′
2,v

′
3}|=

5
2n(n−1)−12. It follows that |F2|= |F2 \F1|+ |F1 ∩F2| ≥

5
2n(n−1)−11 > n2 −n−1 for n ≥ 5, which contradicts |F2| ≤ n2 −n−1.

Suppose F1\F2 = /0. Then F1 ⊆F2. Since F2 is a nature faulty set, CKn−F2 = Sn−F1−F2

has no isolated vertex. The proof of Claim is completed.

Let u ∈ V (CKn) \ (F1 ∪F2). By Claim I, u has at least one neighbor in CKn −F1 −F2.

Since the vertex set pair (F1,F2) does not satisfy any one condition in Theorem 5.3.2, by the

condition (1) of Theorem 5.3.2, for any pair of adjacent vertices u,w ∈V (CKn)\ (F1 ∪F2),

there is no vertex v ∈ F1 △ F2 such that uw ∈ E(CKn) and vw ∈ E(CKn). It follows that u has

no neighbor in F1 △ F2. By the arbitrariness of u, there is no edge between V (CKn)\(F1∪F2)

and F1 △ F2. Since F2 \F1 ̸= /0 and F1 is a nature faulty set, δCKn([F2 \F1]) ≥ 1. Since

δ (CKn[F2 \F1])≥ 1, |F2\F1| ≥ 2 holds. Since both F1 and F2 are nature faulty sets, and there

is no edge between V (CKn)\(F1∪F2) and F1 △ F2, F1∩F2 is a nature cut of CKn. By Lemma

7.3.3, we have |F1∩F2| ≥ n2−n−2. Therefore, |F2|= |F2\F1|+ |F1∩F2| ≥ 2+n2−n−2=

n2 −n, which contradicts |F2| ≤ n2 −n−1. Therefore, CKn is nature n2 −n−1-diagnosable

and t1(CKn)≥ n2 −n−1. The proof is completed. 2

Combining Lemma 7.5.1 and 7.5.2, we have the following theorem.

Theorem 7.5.3 Let n≥ 5. Then the nature diagnosability of the Cayley graph CKn generated

by the complete graph Kn under MM∗ model is n2 −n−1.

7.6 Conclusion

In this chapter, we investigated the problem of the nature diagnosability of CKn under the

PMC model and MM∗ model. It is proved that the nature connectivity of CKn is n2 −n−2

and the nature diagnosability of CKn under the PMC model is n2 − n− 1 for n ≥ 4 and

under the MM∗ model is n2 −n−1 for n ≥ 5. Note that CKn and CΓn are both generated by
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transpositions. However, since tree is the subgraph of complete graph, the results on CKn are

more general.



Chapter 8

The Nature Diagnosability of

Bubble-Sort Star Graph under the PMC

Model & MM∗ Model

In this chapter, we show that the nature diagnosability of BSn is 4n− 7 under the PMC

model for n ≥ 4, the nature diagnosability of BSn is 4n−7 under the MM∗ model for n ≥ 5.

The results in this chapter is published in International Journal of Engineering and Applied

Sciences [86].

8.1 Background & Known Results

As we defined in chapter 2, Bubble-sort Star graph BSn is Cayley graph generated by

transpositions, thus we have Proposition 8.1.1 and Proposition 8.1.2.

Proposition 8.1.1 For any integer n ≥ 1, BSn is (2n−3)-regular, vertex-transitive.

Proposition 8.1.2 For any integer n ≥ 2, BSn is bipartite.

Since the generating set of BSn contains two transpositions, which are disjoint, it is

straightforward to prove the following Proposition 8.1.3.
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Proposition 8.1.3 For any integer n ≥ 3, the girth of BSn is 4.

By Theorem 2.4.3, a simple connected graph H can be labelled properly. We can partition

BSn into n subgraphs BS1, BS2, . . . ,BSn, where every vertex u = x1x2 . . .xn ∈V (BSn) has a

fixed integer i in the last position xn for i ∈ [n]. It is obvious that BSi
n is isomorphic to BSn−1

for i ∈ [n]. Let v ∈V (BSi
n), then v(1n) and v(n−1,n) are called outside neighbors of v.

The following two propositions are from [15].

Proposition 8.1.4 [15] Let BSi
n be defined as above. There are 2(n−2)! independent cross-

edges between two different Hi’s.

Proposition 8.1.5 [15] Let BSn be the bubble-sort star graph. If two vertices u,v are adjacent,

there is no common neighbor vertex of these two vertices, i.e., |N(u)∩N(v)| = 0. If two

vertices u,v are not adjacent, there are at most three common neighbor vertices of these two

vertices, i.e., |N(u)∩N(v)| ≤ 3.

Next we include results on the nature connectivity of BSn, which is a indispensable part

combined with Lemma 7.4.1 in proof to determine the nature diagnosability of CΓn under

PMC Model or MM∗, where n ≥ 4.

Lemma 8.1.1 [97] The nature connectivity κ∗(BS4) of the bubble-sort star graph BS4 is 8.

Theorem 8.1.2 [96] For n ≥ 5, the bubble-sort star graph BSn is tightly (4n− 8) super-

nature-connected.

To show the nature diagnosability of Bubble-sort star graph under the PMC model, we

shall first prove the following Lemma.

Lemma 8.1.3 Let A = {(1),(12)}. If n ≥ 4, F1 = NBSn(A), F2 = A∪NBSn(A), then |F1| =

4n−8, |F2|= 4n−6, δ (BSn −F1)≥ 1, and δ (BSn −F2)≥ 1.

Proof: Since A = {(1),(12)}, we have BSn[A]∼= BS2 = K2. Since BSn has not 3-cycles,

we have |NBSn(A)|= 4n−8. Thus from calculating, we have |F1|= 4n−8, |F2|= |A|+ |F1|=

4n−6.
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Claim 1 . For any x ∈ Sn \F2, |NBSn(x)∩F2)| ≤ 2n−4.

Since BSn is a bipartite graph, there is no 5-cycle (1),(ki),x,(12)(l j),(12),(1) of BSn,

where (ki),(l j) ∈ S \ (12). Let u ∈ NBSn((1)) \ (12). If u is adjacent to x, then x is not

adjacent to each of NBSn((12)) \ (1). Since |NBSn((1)) \ (12)| = 2n− 4, we have that x is

adjacent to at most (2n−4) vertices in F1.

By Claim 1, |NBSn(x)∩F2)| ≤ 2n− 4 for any x ∈ Sn \F2. Therefore, δ (BSn −F2) ≥

2n−3−(2n−4) = 1. BSn−F1 has two components BSn−F2 and BS2. Note that δ (BS2) = 1,

therefore, δ (BSn −F1)≥ 1. 2

8.2 The Nature Diagnosability of Bubble-Sort Star Graph

under the PMC Model

Let F1 and F2 be two distinct subsets of V for a system G = (V,E). Define the symmetric

difference F1△F2 =(F1\F2)∪(F2\F1). Yuan et al. [112] presented a sufficient and necessary

condition for a system to be nature t-diagnosable under the PMC model. See Theorem 5.2.2.

Lemma 8.2.1 A graph of minimum degree 1 has at least two vertices.

The proof of Lemma 8.2.1 is straightforward.

Lemma 8.2.2 Let n ≥ 4. Then the nature diagnosability of the bubble-sort star graph BSn

under the PMC model is less than or equal to 4n−7, i.e., t1(BSn)≤ 4n−7.

Proof: Let A be defined in Lemma 7.4.1, and let F1 = NBSn(A), F2 = A∪NBSn(A). By

Lemma 7.4.1, |F1|= 4n−8, |F2|= 4n−6, δ (BSn−F1)≥ 1 and δ (BSn−F2)≥ 1. Therefore,

F1 and F2 are both nature faulty sets of BSn with |F1| = 4n− 8 and |F2| = 4n− 6. Since

A = F1△F2 and NBSn(A) = F1 ⊂ F2, there is no edge of BSn between V (BSn)\(F1 ∪F2) and

F1△F2. By Theorem 5.2.2, we know that BSn is not nature (4n− 6)-diagnosable under

PMC model. Hence, by the definition of nature diagnosability, we conclude that the nature

diagnosability of BSn is less than 4n−6, i.e., t1(BSn)≤ 4n−7. 2
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Lemma 8.2.3 Let n ≥ 4. Then the nature diagnosability of the bubble-sort star graph BSn

under the PMC model is more than or equal to 4n−7, i.e., t1(BSn)≥ 4n−7.

Proof: By the definition of nature diagnosability, it is sufficient to show that BSn is nature

(4n−7)-diagnosable. By Theorem 5.2.2, to prove BSn is nature (4n−7)-diagnosable, it is

equivalent to show that there is an edge uv ∈ E(BSn) with u ∈ V (BSn)\(F1 ∪F2) and v ∈

F1△F2 for each distinct pair of nature faulty subsets F1 and F2 of V (BSn) with |F1| ≤ 4n−7

and |F2| ≤ 4n−7.

We prove this theorem by contradiction. Suppose that there are two distinct nature

faulty subsets F1 and F2 of V (BSn) with |F1| ≤ 4n−7 and |F2| ≤ 4n−7, but the vertex set

pair (F1,F2) does not satisfy with the condition in Theorem 5.2.2, i.e., there are no edges

between V (BSn)\(F1 ∪F2) and F1△F2. Without loss of generality, assume that F2 \F1 ̸= /0.

Suppose V (BSn) = F1 ∪F2. By the definition of BSn, |F1 ∪F2|= |Sn|= n!. It is obvious that

n! > 8n−14 for n ≥ 4. Since n ≥ 4, we have that n! = |V (BSn)|= |F1 ∪F2|= |F1|+ |F2|−

|F1 ∩F2| ≤ |F1|+ |F2| ≤ 2(4n−7) = 8n−14, a contradiction. Therefore, V (BSn) ̸= F1 ∪F2.

Since there are no edges between V (BSn) \ (F1 ∪F2) and F1△F2, and F1 is a nature

faulty set, BSn −F1 has two parts BSn −F1 −F2 and BSn[F2 \F1] (for convenience). Thus,

δ (BSn−F1−F2)≥ 1 and δ (BSn[F2 \F1])≥ 1. Similarly, δ (BSn[F1 \F2])≥ 1 when F1 \F2 ̸=

/0. Therefore, F1 ∩F2 is also a nature faulty set. When F1 \F2 = /0, F1 ∩F2 = F1 is also a

nature faulty set.Since there are no edges between V (BSn −F1 −F2) and F1△F2, F1 ∩F2 is

a nature cut. Since n ≥ 4, by Theorem 8.1.2, we have |F1 ∩F2| ≥ 4n−8. By Lemma 8.2.1,

|F2\F1| ≥ 2. Therefore, |F2|= |F2\F1|+ |F1 ∩F2| ≥ 2+4n−8 = 4n−6, which contradicts

with that |F2| ≤ 4n−7. So BSn is nature (4n−7)-diagnosable. By the definition of t1(BSn),

t1(BSn)≥ 4n−7. 2

Combining Lemmas 8.2.2 and 8.2.3, we have the following theorem.

Theorem 8.2.4 Let n ≥ 4. Then the nature diagnosability of the bubble-sort star graph BSn

under PMC model is 4n−7.
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8.3 The Nature Diagnosability of Bubble-Sort Star Graph

under the MM∗ model

We firstly present the lower bound of the nature diagnosability of the bubble-sort star graph

BSn under the MM∗ model.

Lemma 8.3.1 Let n ≥ 4. Then the nature diagnosability of the bubble-sort star graph BSn

under the MM∗ model is less than or equal to 4n−7, i.e., t1(BSn)≤ 4n−7.

Proof: Let A, F1 and F2 be defined in Lemma 8.1.3. By the Lemma 8.1.3, |F1|= 4n−8,

|F2| = 4n− 6, δ (BSn −F1) ≥ 1 and δ (BSn −F2) ≥ 1. So both F1 and F2 are nature faulty

sets. By the definitions of F1 and F2, F1△F2 = A. Note F1 \ F2 = /0, F2 \ F1 = A and

(V (BSn) \ (F1 ∪F2))∩A = /0. Therefore, both F1 and F2 are not satisfied with any one

condition in Theorem 5.3.2, and BSn is not nature (3n−6)-diagnosable. Hence, t1(BSn)≤

4n−7. The proof is completed. 2

Then we show the upper bound of the nature diagnosability of the bubble-sort star graph

BSn under the MM∗ model.

Lemma 8.3.2 Let n ≥ 5. Then the nature diagnosability of the bubble-sort star graph BSn

under the MM∗ model is more than or equal to 4n−7, i.e., t1(BSn)≥ 4n−7.

Proof: By the definition of nature diagnosability, it is sufficient to show that BSn is nature

(4n−7)-diagnosable.

By Theorem 5.3.2, suppose, on the contrary, that there are two distinct nature faulty

subsets F1 and F2 of BSn with |F1| ≤ 4n−7 and |F2| ≤ 4n−7, but the vertex set pair (F1,F2)

does not satisfy any condition in Theorem 5.3.2. Without loss of generality, assume that

F2\F1 ̸= /0. Similarly to the discussion on V (BSn) ̸=F1∪F2 in Lemma 8.2.3, we can conclude

V (BSn) ̸= F1 ∪F2. Therefore, V (BSn) ̸= F1 ∪F2.

Claim 1. BSn −F1 −F2 has no isolated vertex.

Suppose, on the contrary, that BSn −F1 −F2 has at least one isolated vertex w. Since

F1 is a nature faulty set, there is a vertex u ∈ F2 \F1 such that u is adjacent to w. Since the
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vertex set pair (F1,F2) does not satisfy any conditions in Theorem 5.3.2, there is at most one

vertex u ∈ F2 \F1 such that u is adjacent to w. Thus, there is just a vertex u ∈ F2 \F1 such

that u is adjacent to w. Similarly, we can that there is just a single vertex v ∈ F1 \F2 such that

v is adjacent to w when F1 \F2 ̸= /0. Let W ⊆ Sn \ (F1 ∪F2) be the set of isolated vertices in

BSn[Sn \ (F1 ∪F2)], and let H be the subgraph induced by the vertex set Sn \ (F1 ∪F2 ∪W ).

Then for any w ∈W , there are (2n−5) neighbors in F1 ∩F2. Since |F2| ≤ 4n−7, we have

∑w∈W |NBSn[(F1∩F2)∪W ](w)| = |W |(2n− 5) ≤∑v∈F1∩F2 dBSn(v)≤ |F1 ∩F2|(2n− 3) ≤ (|F2| −

1)(2n−3)≤ (4n−8)(2n−3) = 8n2 −28n+24. It follows that |W | ≤ 8n2−28n+24
2n−5 < 4n−3

for n ≥ 5. Note |F1 ∪F2|= |F1|+ |F2|− |F1 ∩F2| ≤ 2(4n−7)− (2n−5) = 6n−9. Suppose

V (H) = /0. Then n! = |Sn|= |V (BSn)|= |F1 ∪F2|+ |W |< 6n−9+4n−3 = 10n−11. This

is a contradiction to n ≥ 5. So V (H) ̸= /0. Since the vertex set pair (F1,F2) does not satisfy

the condition (1) of Theorem 5.3.2, and any vertex of V (H) is not isolated in H, we know

that there is no edge between V (H) and F1△F2. Thus, F1 ∩F2 is a vertex cut of BSn and

δ (BSn − (F1 ∩F2)) ≥ 1, i.e., F1 ∩F2 is a nature cut of BSn. By Theorem 8.1.2, we have

|F1 ∩F2| ≥ 4n− 8. Because |F1| ≤ 4n− 7, |F2| ≤ 4n− 7, and neither F1 \F2 nor F2 \F1 is

empty, we have |F1 \F2|= |F2 \F1|= 1. Let F1 \F2 = {v1} and F2 \F1 = {v2}. Then for any

vertex w ∈W , w are adjacent to v1 and v2. According to Proposition 8.1.4, there are at most

three common neighbors for any pair of vertices in BSn, it follows that there are at most three

isolated vertices in BSn −F1 −F2, i.e., |W | ≤ 3.

Suppose that there is exactly one isolated vertex v in BSn −F1 −F2. Let v1 and v2 be

adjacent to v. Then NBSn(v)\{v1,v2}⊆F1∩F2. Since BSn contains no triangle, it follows that

NBSn(v1)\{v} ⊆ F1∩F2; NBSn(v2)\{v} ⊆ F1∩F2; [NBSn(v)\{v1,v2}]∩ [NBSn(v1)\{v}] = /0

and [NBSn(v) \ {v1,v2}]∩ [NBSn(v2) \ {v}] = /0. By Proposition 8.1.4, |[NBSn(v1) \ {v}]∩

[NBSn(v2)\{v}]| ≤ 2. Thus, |F1 ∩F2| ≥ |NBSn(v)\{v1,v2}|+ |NBSn(v1)\{v}|+ |NBSn(v2)\

{v}|= (2n−5)+(2n−4)+(2n−4)−2 = 6n−15. It follows that |F2|= |F2 \F1|+ |F1 ∩

F2| ≥ 1+6n−15 = 6n−14 > 4n−7 (n ≥ 5), which contradicts |F2| ≤ 4n−7.

Suppose that there are exactly two isolated vertices v and w in BSn −F1 −F2. Let v1

and v2 be adjacent to v and w, respectively. Then NBSn(v) \ {v1,v2} ⊆ F1 ∩F2. Since BSn

contains no triangle, it follows that NBSn(v1)\{v,w} ⊆ F1 ∩F2, NBSn(v2)\{v,w} ⊆ F1 ∩F2,
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[NBSn(v)\{v1,v2}]∩ [NBSn(v1)\{v,w}] = /0 and [NBSn(v)\{v1,v2}]∩ [NBSn(v2)\{v,w}] = /0.

By Proposition 8.1.4, there are at most two common neighbors for any pair of vertices in

BSn. Thus, it follows that |[NBSn(v1) \ {v,w}]∩ [NBSn(v2) \ {v,w}]| ≤ 1. Thus, |F1 ∩F2| ≥

|NBSn(v)\{v1,v2}|+ |NBSn(w)\{v1,v2}|+ |NBSn(v1)\{v,w}|+ |NBSn(v2)\{v,w}|= (2n−

5)+(2n−5)−1+(2n−5)+(2n−5)−1 = 8n−22. It follows that |F2|= |F2 \F1|+ |F1 ∩

F2| ≥ 1+8n−22 = 8n−21 > 4n−7 (n ≥ 5), which contradicts |F2| ≤ 4n−7.

Suppose that there are exactly three isolated vertices u,v and w in BSn −F1 −F2. Let

v1 and v2 be adjacent to u,v and w, respectively. Then NBSn(v)\{v1,v2} ⊆ F1 ∩F2. Since

BSn contains no triangle, it follows that NBSn(v1)\{u,v,w} ⊆ F1 ∩F2, NBSn(v2)\{u,v,w} ⊆

F1 ∩F2, [NBSn(v)\{v1,v2}]∩ [NBSn(v1)\{u,v,w}] = /0 and [NBSn(v)\{v1,v2}]∩ [NBSn(v2)\

{u,v,w}] = /0. By Proposition 8.1.4, there are at most three common neighbors for any pair

of vertices in BSn. Thus, it follows that |[NBSn(v1) \ {u,v,w}]∩ [NBSn(v2) \ {u,v,w}]| = 0.

Thus, |F1∩F2| ≥ |NBSn(u)\{v1,v2}|+ |NBSn(v)\{v1,v2}|+ |NBSn(w)\{v1,v2}|+ |NBSn(v1)\

{u,v,w}|+ |NBSn(v2)\{u,v,w}|= (2n−5)+(2n−5)+(2n−5)+(2n−6)+(2n−6)−3=

10n−30. It follows that |F2|= |F2 \F1|+ |F1∩F2| ≥ 1+10n−30 = 10n−29 > 4n−7 (n ≥

5), which contradicts |F2| ≤ 4n−7.

Suppose F1 \F2 = /0. Then F1 ⊆ F2. Since F2 is a nature faulty set, BSn −F2 = BSn −

F1 −F2 has no isolated vertex. The proof of Claim 1 is completed.

Let u ∈ V (BSn) \ (F1 ∪F2). By Claim 1, u has at least one neighbor in BSn −F1 −F2.

Since the vertex set pair (F1,F2) is not satisfied with any one condition in Theorem 5.3.2, by

the condition (1) of Theorem 5.3.2, for any pair of adjacent vertices u,w ∈V (BSn)\(F1∪F2),

there is no vertex v ∈ F1△F2 such that uw ∈ E(BSn) and vw ∈ E(BSn). It follows that u has

no neighbor in F1△F2. By the arbitrariness of u, there is no edge between V (BSn)\ (F1 ∪F2)

and F1△F2. Since F2 \F1 ̸= /0 and F1 is a nature faulty set, δBSn([F2 \F1])≥ 1. By Lemma

8.2.1, |F2 \F1| ≥ 2. Since both F1 and F2 are nature faulty sets, and there is no edge between

V (BSn)\ (F1 ∪F2) and F1△F2, F1 ∩F2 is a nature cut of BSn. By Theorem 8.1.2, we have

|F1 ∩F2| ≥ 4n− 8. Therefore, |F2| = |F2 \F1|+ |F1 ∩F2| ≥ 2+(4n− 8) = 4n− 6, which

contradicts |F2| ≤ 4n−7. Therefore, BSn is nature (4n−7)-diagnosable and t1(BSn)≥ 4n−7.

The proof is completed. 2
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Combining Lemmas 8.3.1 and 8.3.2, we have the following theorem.

Theorem 8.3.3 Let n ≥ 5. Then the nature diagnosability of the bubble-sort star graph BSn

under MM∗ model is 4n−7.

8.4 Conclusion

In this chapter, we investigated the problem of the nature diagnosability of Bubble-Sort Star

Graph under the PMC model and MM∗ model. The transposition simple graph of Bubble-sort

star graph combined both properties of the transposition simple graph of Bubble-sort graph

and star graph. It makes the problem of investigating the nature diagnosability of Bubble-Sort

Star Graph under the PMC model and MM∗ model more generalized and challenging.



Chapter 9

The Connectivity & Nature

Diagnosability of Expanded k-Ary

n-Cubes

In this chapter, we show that (1) the connectivity of XQk
n is 4n; (2) the nature connectivity

of XQk
n is 8n− 4; (3) the nature diagnosability of XQk

n under the PMC model and MM∗

model is 8n−3 for n ≥ 2. The results in this chapter is published in RAIRO - Theoretical

Informatics and Applications [85].

9.1 Some Basic Propositions of Expanded k-Ary n-Cubes

We can partition XQk
n into k disjoint subgraphs XQk

n[0], XQk
n[1], . . . , XQk

n[k− 1] (abbrevi-

ated as XQ[0], XQ[1], . . . , XQ[k− 1], if there is no ambiguity), where every vertex u =

u0u1 . . .un−1 ∈V (XQk
n) has a fixed integer i in the last position un−1 for i ∈ {0,1, . . . ,k−1}.

Let u ∈V (XQ[i]). Then N(u)\V (XQ[i]) is said to be outside neighbors of u.

Proposition 9.1.1 Each XQ[i] is isomorphic to XQk
n−1 for 0 ≤ i ≤ k−1.

Proof: Note that the vertex set of XQk
n−1 is {u0u1 . . .un−2 : 0 ≤ ui ≤ k−1,0 ≤ i ≤ n−2} and

the vertex set of XQ[i] is {u0u1 . . .un−2i : 0 ≤ u j ≤ k−1,0 ≤ j ≤ n−2, i ∈ {0,1, . . . ,k−1}}.
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Therefore, |{u0u1 . . .un−2 : 0 ≤ ui ≤ k − 1,0 ≤ i ≤ n − 2}| = |{u0u1 . . .un−2i : 0 ≤ u j ≤

k − 1,0 ≤ j ≤ n − 2, i ∈ {0,1, . . . ,k − 1}}|. Now define a mapping from V (XQk
n−1) to

V (XQ[i]) given by

ϕ : u0u1u2 · · ·un−2 → u0u1 · · ·un−2i.

It is clear that ϕ is bijective. Let u = u0u1u2 · · ·un−2, v = v0v1v2 · · ·vn−2, and uv ∈

E(XQk
n−1), then, based on the definition of XQk

n−1, there exists an integer j ∈ {0,1, . . . ,n−

2} such that v j = u j + g (mod k) and ui = vi, for i ∈ {0,1, . . . ,n− 2} \ { j}, where g ∈

{1,−1,2,−2}. Therefore, ϕ(v)= v0v1v2 · · ·vn−2i= u0u1 · · ·u j−1,u j+g,u j+1 · · ·un−2i. Note

that ϕ(u) = u0u1 · · ·u j−1,u j,u j+1 · · ·un−2i. Thus, ϕ(u)ϕ(v) ∈ E(XQ[i]).

Let ϕ(u) = u0u1 · · ·u j−1, u j, u j+1 · · ·un−2i, ϕ(v) = v0v1v2 · · ·vn−2i and ϕ(u)ϕ(v) ∈

E(XQ[i]), then there exists an integer j ∈ {0,1, . . . ,n−2} such that v j = u j +g (mod k) and

ui = vi, for i∈ {0,1, . . . ,n−2}\{ j}, where g∈ {1,−1,2,−2}, i.e., ϕ(v) = v0v1v2 · · ·vn−2i=

u0u1 · · ·u j−1,u j +g,u j+1 · · ·un−2i. Therefore, ϕ−1(v) = v0v1v2 · · ·vn−2 = u0u1 · · ·u j−1,u j +

g,u j+1 · · ·un−2. Note that ϕ−1(u)= u0u1 · · ·u j−1,u j,u j+1 · · ·un−2. Thus, uv=ϕ−1(u)ϕ−1(v)

∈ E(XQk
n−1). 2

Let (Zk)
n denotes the n-fold Cartesian product of the group (Zk,⊕k), where Zk =

{0,1, . . . ,k−1} and where k denotes addition modulo k. Let x = (x0,x1, . . . ,xn−1) ∈ (Zk)
n.

Then x−1 = (k− x0,k− x1, . . . ,k− xn−1).

Here we will show that the expanded k-ary n-cube is Cayley graph.

Theorem 9.1.1 Let n ≥ 1 and even k ≥ 6. The expanded k-ary n-cube XQk
n is the Cayley

graph Cay(S,(Zk)
n), where the spanning set S is S = {±e1, . . . ,±en} ∪ {±2e1, . . . ,±2en}

with mod k.

Proof: Note that V (XQk
n) = (Zk)

n. Now define a mapping from V (XQk
n) to (Zk)

n given

by

ϕ : u1u2u3 · · ·un−1 → u1u2 · · ·un−1.

Then ϕ is bijective. Let uv ∈ E(XQk
n). Then, the definition of XQk

n, there exists an integer

j ∈ {0,1, . . . ,n−1} such that v j = u j +g (mod k) and ui = vi, for i ∈ {0,1, . . . ,n−1}\{ j},
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where g ∈ {1,−1,2,−2}. Note that k − 1 ≡ −1 (mod k) and k − 2 ≡ −2 (mod k). Let

s = (0, . . . ,0,0+ g,0, . . . ,0), and let 0+ g be the j position in the s, then s ∈ S. Note that

ϕ(u)ϕ(v) = uv. Therefore, v = u+ s, hence ϕ(u)ϕ(v) ∈ E(Cay(S,(Zk)
n)).

Let ϕ(u)ϕ(v) ∈ E(Cay(S,(Zk)
n)), then by the definition of Cay(S,(Zk)

n), there exists

an s ∈ S such that ϕ(v) = ϕ(u) + s. Note that ϕ(u) = u and ϕ(v) = v, therefore, v =

ϕ(v) = ϕ(u)+ s = u+ s. Note that ϕ−1(u)ϕ−1(v) = uv and v = u+ s. Let s = (0, . . . ,0,0+

g,0, . . . ,0), and let 0+g be the j position in the s, then v j = u j +g (mod k) and ui = vi, for

i ∈ {0,1, . . . ,n−1}\{ j}. Note that k−1 ≡−1 (mod k) and k−2 ≡−2 (mod k), therefore,

g ∈ {1,−1,2,−2} and hence uv ∈ E(XQk
n). 2

By Theorem 9.1.1, we know that the expanded k-ary n-cube belongs to Cayley graph and

hence XQk
n has the following properties since Cayley graphs are regular and vertex-transitive.

Proposition 9.1.2 XQk
n is 4n-regular, vertex-transitive.

It is straightforward to see the following proposition.

Proposition 9.1.3 The girth of XQk
n is 3.

Combined with Proposition 9.1.3, Proposition 9.1.4 will play a significant role in proving

the following lemmas and theorems throughout this chapter.

Proposition 9.1.4 Let u ∈ V (XQ[i]), then four outside neighbors of u are in four distinct

XQ[ j]′s.

Proof: Let u = u0u1 . . .un−2i, then u ∈ V (XQ[i]), u0u1 . . .un−2i + 1 ∈ V (XQ[i + 1]),

u0u1 . . .un−2i−1 ∈V (XQ[i−1]), u0u1 . . .un−2i+2 ∈V (XQ[i+2]) and u0u1 . . .un−2i−2 ∈

V (XQ[i−2]). 2

The following propositions show how large is the common neighbourhood of two vertices

in expanded k-ary 1-cube and then in expanded k-ary n-cubes. These two propositions will

be important parts in the proof to determine nature connectivity of expanded k-ary n-cubes.

Proposition 9.1.5 Let XQk
1 be the expanded k-ary 1-cube.
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(1) If k = 6 and two vertices u,v are adjacent, then there are at most two common

neighbors of these two vertices, i.e., |N(u)∩N(v)| ≤ 2. If k = 6 and two vertices u,v are

not adjacent, then there are at most four common neighbors of these two vertices, i.e.,

|N(u)∩N(v)| ≤ 4.

(2) If k ≥ 8, then there are at most two common neighbors of two vertices u,v, i.e.,

|N(u)∩N(v)| ≤ 2.

Proof: Let u,v ∈V (XQk
1), suppose that k = 6, then XQk

1 = XQ6
1. By Proposition 9.1.2,

without loss of generality, we assume that u = 0. Since N(0) = {1,2,4,5} and N(3) =

{1,2,4,5}, furthermore two vertices 0,3 are not adjacent and N(0)∩N(3) = {1,2,4,5}.

Therefore, there are at most four common neighbors of these two vertices, i.e., |N(u)∩

N(v)| ≤ 4. Fig. 2.9 (geometry) is symmetrical on the axis 03. Therefore, we consider

only edges 01 and 02 for adjacent two vertices. Note that N(0) = {1,2,4,5} and N(1) =

{0,2,3,5}, thus N(0)∩N(1) = {2,5}, N(0) = {1,2,4,5} and N(2) = {0,1,3,4}. Therefore,

N(0)∩N(2) = {1,4}. So, for adjacent two vertices u,v, there are at most two common

neighbors of these two vertices, i.e., |N(u)∩N(v)| ≤ 2.

Suppose that k ≥ 8. By Proposition 9.1.2, we further suppose that u = 0. Fig. 2.10

(geometry) is symmetrical about the axis 0 k
2 . Therefore, we only consider two vertices:

u = 0 and v ∈ {1,2, . . . , k
2}. Since N(0) = {1,2,k− 2,k− 1}, N(1) = {0,2,3,k− 1} and

N(2) = {0,1,3,4}, so N(0)∩N(1) = {2,k−1} and N(0)∩N(2) = {1}. Thus, for adjacent

two vertices u,v, there are at most two common neighbors of these two vertices, i.e., |N(u)∩

N(v)| ≤ 2. Now consider two vertices: u = 0 and v ∈ {3,4, . . . , k
2}. Let v = 3. Note

that N(3) = {1,2,4,5}, so N(0)∩N(3) = {1,2}. Note that N(4) = {2,3,5,6}, therefore,

N(0)∩N(4) = {2,6} when k = 8 and N(0)∩N(4) = {2} when k ≥ 10. Let v ∈ {5,6, . . . , k
2}

and x ∈ N(v), then 3 ≤ x ≤ k−3. So N(0)∩N(x) = /0. Thus, there are at most two common

neighbors of these two vertices u,v, i.e., |N(u)∩N(v)| ≤ 2. 2

Proposition 9.1.6 Let XQk
n be the expanded k-ary n-cube.

(1) If k = 6 and two vertices u,v are adjacent, then there are at most two common

neighbors of these two vertices, i.e., |N(u)∩N(v)| ≤ 2. If k = 6 and two vertices u,v are
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not adjacent, then there are at most four common neighbors of these two vertices, i.e.,

|N(u)∩N(v)| ≤ 4.

(2) If k ≥ 8, then there are at most two common neighbors of two vertices u,v, i.e.,

|N(u)∩N(v)| ≤ 2.

Proof: We can partition XQk
n into k disjoint subgraphs XQk

n[0],XQk
n[1], . . . , XQk

n[k−1]

(abbreviated as XQ[0],XQ[1], . . . , XQ[k−1], if there is no ambiguity), where every vertex

u0u1 . . .un−1 ∈V (XQk
n) has a fixed integer i in the last position un−1 for i ∈ {0,1, . . . ,k−1}.

By Proposition 9.1.1, each XQ[i] is isomorphic to XQk
n−1 for 0 ≤ i ≤ k − 1. Let u,v ∈

V (XQk
n), by Proposition 9.1.2, without loss of generality, we suppose that u = 00 . . .0︸ ︷︷ ︸

n

, then

u ∈V (XQ[0]).

Suppose that k = 6. When n = 1, the result holds by Proposition 9.1.5. We proceed by

induction on n (n ≥ 2). Our induction hypothesis is the following.

(a) If two vertices u,v are adjacent, then there are at most two common neighbors of these

two vertices, i.e., |N(u)∩N(v)| ≤ 2 in XQ6
n−1.

(b) If two vertices u,v are not adjacent, then there are at most four common neighbors of

these two vertices, i.e., |N(u)∩N(v)| ≤ 4 in XQ6
n−1.

Let v ∈ V (XQ[0]), by the induction hypothesis, (a) if two vertices u,v are adjacent,

|N(u)∩N(v)| ≤ 2 in XQ[0]; (b) if two vertices u,v are not adjacent, |N(u)∩N(v)| ≤ 4 in

XQ[0] and also by the Proposition 9.1.4, (N(u)∩V (XQ[i]))∩ (N(v)∩V (XQ[i])) = /0 for

i ∈ {1,2, . . . ,5}. Therefore, |N(u)∩N(v)| ≤ 2 for (a) and |N(u)∩N(v)| ≤ 4 for (b) in this

case.

Suppose that v∈V (XQ[i]) for i∈{1,2, . . . ,5}. If v∈{0 . . .0︸ ︷︷ ︸
n−1

1,0 . . .0︸ ︷︷ ︸
n−1

2,. . .,0 . . .0︸ ︷︷ ︸
n−1

4,0 . . .0︸ ︷︷ ︸
n−1

5},

then, by the induction hypothesis, (a) if two vertices u,v are adjacent, |N(u)∩N(v)| ≤ 2; (b) if

two vertices u,v are not adjacent, |N(u)∩N(v)| ≤ 4. Note that (N(u)∩V (XQ[i]))∩ (N(v)∩

V (XQ[i]))\{0 . . .0︸ ︷︷ ︸
n−1

1,0 . . .0︸ ︷︷ ︸
n−1

2, . . . ,0 . . .0︸ ︷︷ ︸
n−1

4,0 . . .0︸ ︷︷ ︸
n−1

5} = /0 for i ∈ {0,1,2, . . . ,5}. Therefore,

|N(u)∩N(v)| ≤ 2 or |N(u)∩N(v)| ≤ 4 in this case. Let v∈V (XQ[i])\{0 . . .0︸ ︷︷ ︸
n−1

1,0 . . .0︸ ︷︷ ︸
n−1

2,0 . . .0︸ ︷︷ ︸
n−1

3

,0 . . .0︸ ︷︷ ︸
n−1

4,0 . . .0︸ ︷︷ ︸
n−1

5} for i ∈ {1,2,3,4,5}. Since |N(u)∩V (XQ[i])| ≤ 1 for i ∈ {1,2,3,4,5},
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|N(v)∩V (XQ[0])| ≤ 1 and (N(u)∩V (XQ[ j]))∩ (N(v)∩V (XQ[ j])) = /0 for i ̸= j, |N(u)∩

N(v)| ≤ 2 holds.

Suppose that k ≥ 8. When n = 1, the result holds by Proposition 9.1.5. We proceed

by induction on n. Our induction hypothesis is that |N(u)∩N(v)| ≤ 2 for two vertices

u,v in XQk
n−1. Let v ∈ V (XQ[0]). By the induction hypothesis, |N(u)∩N(v)| ≤ 2 for two

vertices u,v in XQ[0]. By Proposition 9.1.4, (N(u)∩V (XQ[i]))∩ (N(v)∩V (XQ[i])) = /0 for

i ∈ {1,2, . . . ,k−1}. Therefore, |N(u)∩N(v)| ≤ 2 in this case.

Suppose that v ∈V (XQ[i]) for i ∈ {1,2, . . . ,k−2,k−1}. If v ∈ {0 . . .0︸ ︷︷ ︸
n−1

1,0 . . .0︸ ︷︷ ︸
n−1

2,

. . . ,0 . . .0︸ ︷︷ ︸
n−1

(k−1)}, then |N(u)∩N(v)| ≤ 2 by Propositions 9.1.4 and 9.1.5. Let v∈V (XQ[i])\

{0 . . .0︸ ︷︷ ︸
n−1

1, 0 . . .0︸ ︷︷ ︸
n−1

2, . . . ,0 . . .0︸ ︷︷ ︸
n−1

(k−1)}. Note that |N(u)∩V (XQ[i])| ≤ 1, |N(v)∩V (XQ[0])| ≤

1 and (N(u)∩V (XQ[ j]))∩ (N(v)∩V (XQ[ j])) = /0 for i ̸= j. Therefore, there are at most

two common neighbors of two vertices u,v, i.e., |N(u)∩N(v)| ≤ 2. 2

9.2 The Connectivity of Expanded k-Ary n-Cubes

To investigate the nature diagnosability of the expanded k-ary n-cube XQk
n, we need to know

the nature connectivity of XQk
n. In this section, we shall show the connectivity and nature

connectivity of XQk
n.

Proposition 9.2.1 The connectivity κ(XQk
1) = 4.

Proof: By Menger’s Theorem, a graph XQk
1 has connectivity κ(XQk

1) = 4 if and only

if, given any two distinct vertices of V (XQk
1), there are 4 vertex-disjoint paths joining

them. By Theorem 9.1.1, it is sufficient to show that, for u = 0 and a distinct vertex v

of V (XQk
1), there are 4 vertex-disjoint paths joining u and v. By the symmetry, we will

prove that, for u = 0 and one v ∈ {1,2, . . . , k
2}, there are 4 vertex-disjoint paths joining u

and v. Let an odd i ∈ {2,3, . . . , k
2}. We have that four vertex-disjoint paths: 0,1,3,5, . . . , i;

0,2,4, . . . , i− 1, i; 0,k− 1,k− 3,k− 5, . . . , i and 0,k− 2,k− 4, . . . , i+ 1, i. When i = 1, we

have that four vertex-disjoint paths: 0,1; 0,k − 1,1; 0,2,1 and 0,k − 2,k − 4, . . . ,4,3,1.
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Let an even i ∈ {1,2,3, . . . , k
2}. We have that four vertex-disjoint paths: 0,1,3, . . . , i−1, i;

0,2,4, . . . , i; 0,k−1,k−3,k−5, . . . , i+1, i and 0,k−2,k−4, . . . , i. 2

Proposition 9.2.2 The connectivity κ(XQk
2) = 8.

Proof: Note κ(XQk
2)≤ δ (XQk

2) = 8. We prove this statement by contradiction. Suppose

that F ⊆V (XQk
2) with |F | ≤ 7 is a cut of XQk

2. By Proposition 9.1.1, each XQ[i] is isomorphic

to XQk
1 for 0 ≤ i ≤ k−1. Let Fi = F ∩V (XQ[i]) for i ∈ {0,1,2, . . . ,k−1}.

Suppose that |Fi| = max{|Fi| : 0 ≤ i ≤ k − 1}. Note that the vertex set of XQ[i] is

{u0i : 0 ≤ u0 ≤ k−1, i ∈ {1, . . . ,k−1}} and the vertex set of XQ[0] is {u00 : 0 ≤ u0 ≤ k−1}.

Now define a mapping from V (XQk
2) to V (XQk

2) given by

ϕ : u0u1 → u0(u1 − i).

Then ϕ(u0i) = u00.

Claim 1. ϕ is an automorphism of XQk
2.

It is clear that ϕ is bijective. Let u = u0u1, v = v0v1, and uv ∈ E(XQk
2). Then, the

definition of XQk
2, v0 = u0 + g (mod k) and v1 = u1, or v0 = u0, v1 = u1 + g (mod k),

where g ∈ {1,−1,2,−2}. Suppose, firstly, that v0 = u0 + g (mod k) and v1 = u1. Note

ϕ(u) = u0,u1 − i and ϕ(v) = ϕ(u0 +g,u1) = u0 +g,u1 − i. Suppose, secondly, that v0 = u0,

v1 = u1 + g (mod k). Note ϕ(u) = u0,u1 − i and ϕ(v) = ϕ(u0,u1 + g) = u0,u1 + g − i.

Therefore, ϕ(u)ϕ(v) ∈ E(XQk
2) by the definition of XQk

2.

Let ϕ(u) = u0,u1 − i, ϕ(v) = v0,v1 − i and ϕ(u)ϕ(v) ∈ E(XQk
2), then, by the definition

of XQk
2, v0 = u0 + g (mod k) and v1 − i = u1 − i, or v0 = u0, v1 − i = u1 − i+ g (mod k),

where g ∈ {1,−1,2,−2}. Suppose, firstly, that v0 = u0+g (mod k) and v1− i = u1− i. Then

ϕ−1(u) = u0u1 and ϕ−1(v) = u0 +g,u1. Suppose, secondly, that v0 = u0, v1 − i = u1 − i+g

(mod k). Then ϕ−1(u) = u0u1 and ϕ−1(v) = u0,u1 +g. Therefore, uv = ϕ−1(u)ϕ−1(v) ∈

E(XQk
n−1) by the definition of XQk

2. Thus, ϕ is an automorphism.

Claim 2. Let ϕ be defined as above. If F ⊆V (XQk
2) is a cut of XQk

2, then ϕ(F) is also a

cut of XQk
2. In particular, ϕ(Fi)⊆V (XQ[0]) and |ϕ(Fi)|= |Fi|.
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Since ϕ is bijective, |ϕ(F)| = |F | and |ϕ(Fi)| = |Fi|. Let B1, . . . ,Bk (k ≥ 2) be the

components of XQk
2 −F . Then [V (Bi),V (B j)] = /0 for 1 ≤ i, j ≤ k and i ̸= j. Let bi ∈V (Bi)

and b j ∈ V (B j). Then bi is not adjacent to b j. Since ϕ is an automorphism, ϕ(bi) is not

adjacent to ϕ(b j). Therefore, [ϕ(V (Bi)),ϕ(V (B j))] = /0 for 1 ≤ i, j ≤ k and i ̸= j, and

hence ϕ(F) is also a cut of XQk
2. Let f ∈ Fi, then f = u0i for 0 ≤ u0 ≤ k− 1. Therefore,

ϕ( f ) = u00 ∈V (XQ[0]) and hence ϕ(Fi)⊆V (XQ[0]).

By Claim 2, without loss of generality, we suppose that |F0|= max{|Fi| : 0 ≤ i ≤ k−1}.

We consider the following cases.

Case 1. |F0|= 1.

Since |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}, there are six Fi’s such that |Fi| = 1 for i ∈

{1,2, . . . ,k−1} and k ≥ 8. By Proposition 9.2.1, XQ[i]−Fi is connected. Since there is a

perfect matching between XQ[i] and XQ[i+1] for i ∈ {0,1, . . . ,k−2}, XQk
2−F is connected,

a contradiction to that F is a cut of XQk
2.

Case 2. |F0|= 2.

Since |F0|= max{|Fi| : 0 ≤ i ≤ k−1}, there are at most five Fi’s such that 1 ≤ |Fi| ≤ 2 for

i ∈ {1,2, . . . ,k−1}. By Proposition 9.2.1, XQ[i]−Fi is connected. Since there is a perfect

matching between XQ[i] and XQ[i+ 1] for i ∈ {0,1, . . . ,k− 2}, XQk
2 −F is connected, a

contradiction to that F is a cut of XQk
2.

Case 3. |F0|= 3.

Since |F0|= max{|Fi| : 0 ≤ i ≤ k−1}, there are at most four Fi’s such that 1 ≤ |Fi| ≤ 3

for i ∈ {1,2, . . . ,k−1}. By Proposition 9.2.1, XQ[i]−Fi is connected. Since there is a perfect

matching between XQ[i] and XQ[i+1] for i ∈ {0,1, . . . ,k−2}, XQk
2[V (XQ[1]−F1)∪·· ·∪

V (XQ[k− 1]−Fk−1)] is connected. Without loss of generality, we suppose that |F1| = 3.

Then |Fk−1| ≤ 1. Since there is a perfect matching between XQ[0] and XQ[k−1], XQk
2 −F

is connected, a contradiction to that F is a cut of XQk
2.

Case 4. |F0|= 4.

In this case, there are at most three Fi’s such that 1 ≤ |Fi| ≤ 3 for i ∈ {1,2, . . . ,k−1}. By

Proposition 9.2.1, XQ[i]−Fi is connected. Since there is a perfect matching between XQ[i]

and XQ[i+ 1] for i ∈ {0,1, . . . ,k− 2}, XQk
2[V (XQ[1]−F1)∪ ·· · ∪V (XQ[k− 1]−Fk−1)] is
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connected. Since |F1|+ |F2|+ · · ·+ |Fk−1|= 3, by Proposition 9.1.4, XQk
2 −F is connected,

a contradiction to that F is a cut of XQk
2.

Case 5. |F0|= 5.

In this case, there are at most two Fi’s such that 1 ≤ |Fi| ≤ 2 for i ∈ {1,2, . . . ,k−1}.By

Proposition 9.2.1, XQ[i]−Fi is connected. Since there is a perfect matching between XQ[i]

and XQ[i+ 1] for i ∈ {0,1, . . . ,k− 2}, XQk
2[V (XQ[1]−F1)∪ ·· · ∪V (XQ[k− 1]−Fk−1)] is

connected. Since |F1|+ |F2|+ · · ·+ |Fk−1|= 2, by Proposition 9.1.4, XQk
2 −F is connected,

a contradiction to that F is a cut of XQk
2.

Case 6. |F0|= 6.

In this case, there exists a Fi’s such that |Fi|= 1 where i∈ {1,2, . . . ,k−1}. By Proposition

9.2.1, XQ[i]−Fi is connected. Since there is a perfect matching between XQ[i] and XQ[i+1]

for i∈ {0,1, . . . ,k−2}, XQk
2[V (XQ[1]−F1)∪·· ·∪V (XQ[k−1]−Fk−1)] is connected. Since

|F1|+ |F2|+ · · ·+ |Fk−1|= 1, by Proposition 9.1.4, XQk
2 −F is connected, a contradiction to

that F is a cut of XQk
2.

Case 7. |F0|= 7.

In this case, |F1| = |F2| = · · · = |Fk−1| = 0. Since there is a perfect matching between

XQ[i] and XQ[i+1] for i∈{0,1, . . . ,k−2}, XQk
2[V (XQ[1]−F1)∪·· ·∪V (XQ[k−1]−Fk−1)]

is connected. Since |F1|+ |F2|+ · · ·+ |Fk−1|= 0, by Proposition 9.1.4, XQk
2−F is connected,

a contradiction to that F is a cut of XQk
2.

By Cases 1-7, The connectivity XQk
2 is 8. 2

Theorem 9.2.1 Let XQk
n be the expanded k-ary n-cube with n ≥ 1 and even k ≥ 6, then the

connectivity κ(XQk
n) = 4n.

Proof: We can partition XQk
n into k disjoint subgraphs XQk

n[0], XQk
n[1], . . . , XQk

n[k−1]

(abbreviated as XQ[0],XQ[1], . . . , XQ[k−1], if there is no ambiguity), where every vertex

u = u0u1 . . .un−1 ∈V (XQk
n) has a fixed integer i in the last position un−1 for i ∈ {0,1, . . . ,k−

1}. When n = 1 and n = 2, the result holds by Propositions 9.2.1 and 9.2.2. We proceed by

induction on n. Our induction hypothesis is κ(XQk
n−1) = 4n−4 when n ≥ 3. By Proposition

9.1.1, each XQ[i] is isomorphic to XQk
n−1 for 0 ≤ i ≤ k− 1. We will prove κ(XQk

n) = 4n.
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Suppose that F ⊆ V (XQk
n) is a minimum cut of XQk

n. Since κ(XQk
n) ≤ δ (XQk

n) = 4n,

|F | ≤ 4n holds. It is sufficient to show that XQk
n−F is connected for |F | ≤ 4n−1. We prove

this statement by contradiction. Suppose that F ⊆V (XQk
n) with |F | ≤ 4n−1 is a cut of XQk

n.

Let Fi = F ∩V (XQ[i]) for i ∈ {0,1,2, . . . ,k−1} with |F0|= max{|Fi| : 0 ≤ i ≤ k−1}. We

consider the following cases.

Case 1. |F0| ≤ 4n−5.

Since |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}, |Fi| ≤ 4n − 5. By the induction hypothesis,

XQ[i]−Fi is connected. Since kn−1 > 4n− 5+(4n− 5) = 8n− 10 and there is a perfect

matching between XQ[i] and XQ[i+ 1] for i ∈ {0,1, . . . ,k− 2}, XQk
n −F is connected, a

contradiction to that F is a cut of XQk
n.

Case 2. 4n−4 ≤ |F0| ≤ 4n−1.

In this case, there are at most three Fi’s such that 1 ≤ |Fi| ≤ 3. By Proposition 9.2.1,

XQ[i]−Fi is connected for i ∈ {1,2, . . . ,k−1}. Since there is a perfect matching between

XQ[i] and XQ[i+1] for i∈{0,1, . . . ,k−2}, XQk
n[V (XQ[1]−F1)∪·· ·∪V (XQ[k−1]−Fk−1)]

is connected. By Proposition 9.1.4, XQk
n −F is connected, a contradiction to that F is a cut

of XQk
n.

From Cases 1 and 2, The connectivity XQk
n is 4n. 2

Theorem 9.2.2 Let XQk
n be the expanded k-ary n-cube with n ≥ 1 and even k ≥ 6, then XQk

n

is tightly 4n super-connected.

Proof: Let F ⊆ V (XQk
n) with |F | = 4n be any minimum cut of XQk

n, also let Fi =

F ∩V (XQ[i]) for i ∈ {0,1,2, . . . ,k−1} with |F0| = max{|Fi| : 0 ≤ i ≤ k−1}, we consider

the following cases.

Case 1. |F0| ≤ 4n−5.

Since |F0| = max{|Fi| : 0 ≤ i ≤ k− 1}, |Fi| ≤ 4n− 5, by Theorem 9.2.1, XQ[i]−Fi is

connected. Since kn−1 > 4n−5+(4n−5) = 8n−10 and there is a perfect matching between

XQ[i] and XQ[i+1] for i ∈ {0,1, . . . ,k−2}, then XQk
n −F is connected, a contradiction to

that F is a cut of XQk
n.

Case 2. |F0|= 4n−4.
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Suppose that there is only one Fi such that |Fi| ̸= 0, we know that |Fi| = 4. Without

loss of generality, we suppose that |F1|= 4. By Proposition 9.2.1, XQ[i]−Fi is connected

for i ∈ {2,3, . . . ,k−1}. Since there is a perfect matching between XQ[i] and XQ[i+1] for

i ∈ {0,1, . . . ,k− 2}, XQk
2[V (XQ[2]−F3)∪ ·· · ∪V (XQ[k− 1]−Fk−1)] is connected. Since

|Fk−1| = 0 (or |F2| = 0) and there is a perfect matching between XQ[0] and XQ[k− 1] (or

XQ[0] and XQ[2]), XQk
n −F is connected, a contradiction to that F is a cut of XQk

n.

Suppose that there are two Fi’s such that |Fi| ≠ 0, then we know |Fi| ≤ 3. By Proposition

9.2.1, XQ[i]−Fi is connected for i ∈ {1,2, . . . ,k−1}. Since there is a perfect matching be-

tween XQ[i] and XQ[i+1] for i∈ {0,1, . . . ,k−2}, and XQk
2[V (XQ[1]−F1)∪·· ·∪V (XQ[k−

1]−Fk−1)] is connected. By Proposition 9.1.4, XQk
n −F is connected, a contradiction to that

F is a cut of XQk
n.

Suppose that there are three Fi’s such that |Fi| ̸= 0, then |Fi| ≤ 2. By Proposition 9.2.1,

XQ[i]−Fi is connected for i ∈ {1,2, . . . ,k−1}. Since there is a perfect matching between

XQ[i] and XQ[i+1] for i ∈ {0,1, . . . ,k−2}, so XQk
2[V (XQ[1]−F1)∪ ·· · ∪V (XQ[k−1]−

Fk−1)] is connected. By Proposition 9.1.4, we have XQk
n − F is connected, which is a

contradiction to that F is a cut of XQk
n.

Suppose that there are four Fi’s such that |Fi| ̸= 0, then we have |Fi| ≤ 1. By Proposition

9.2.1, XQ[i]−Fi is connected for i ∈ {1,2, . . . ,k−1}. Since there is a perfect matching be-

tween XQ[i] and XQ[i+1] for i ∈ {0,1, . . . ,k−2}, so XQk
2[V (XQ[1]−F1)∪·· ·∪V (XQ[k−

1]−Fk−1)] is connected. Let XQ[0]−F0 be connected. Since kn−1 > 4n−4+1 = 4n−3

and there is a perfect matching between XQ[0] and XQ[1], we know XQk
n −F is connected,

which is a contradiction to that F is a cut of XQk
n.

Let XQ[0]−F0 be disconnected and let B1, . . . ,Bk (k ≥ 2) be the components of XQ[0]−

F0. If k ≥ 3, then, by Proposition 9.1.4, |(N(V (B1)∪N(V (B2)))∩ (V (XQ[1]−F1)∪ ·· · ∪

V (XQ[k − 1]− Fk−1))| ≥ 8. If |V (Br)| ≥ 2 (1 ≤ r ≤ k − 1), then, by Proposition 9.1.4,

|N(V (B1)∩ (V (XQ[1]−F1)∪·· ·∪ (V (XQ[k−1]−Fk−1))| ≥ 8. Combining this with |F1|+

· · ·+ |Fk−1|= 4, we have that XQ[0]−F0 has two components, one of which is an isolated

vertex v. Since kn−1 > 4n− 4+ 1+ 1 = 4n− 2 and there is a perfect matching between
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XQ[0] and XQ[1], XQk
n[V (XQ[0]−F0 −v)∪V (XQ[1]−F1)]∪·· ·∪V (XQ[k−1]−Fk−1)] is

connected. Therefore, XQk
n −F has two components, one of which is an isolated vertex.

Case 3. 4n−3 ≤ |F0| ≤ 4n.

In this case, there are at most three Fi’s such that 1 ≤ |Fi| ≤ 3. By Proposition 9.2.1,

XQ[i]−Fi is connected for i ∈ {1,2, . . . ,k−1}. Since there is a perfect matching between

XQ[i] and XQ[i+1] for i∈{0,1, . . . ,k−2}, XQk
2[V (XQ[1]−F1)∪·· ·∪V (XQ[k−1]−Fk−1)]

is connected. By Proposition 9.1.4, XQk
n −F is connected, a contradiction to that F is a cut

of XQk
n.

From Cases 1-3, XQk
n is tightly 4n super-connected. 2

Here we give a proposition when n = 2 to facilitate the understanding of Proposition

9.2.4.

Proposition 9.2.3 Let XQk
2 be the expanded k-ary 2-cube with even k ≥ 6, and let F ⊆

V (XQk
2) with |F | ≤ 11. If XQk

2 −F is disconnected, then XQk
2 −F has two components, one

of which is an isolated vertex.

Proof: We can partition XQk
2 into k disjoint subgraphs XQk

2[0], XQk
2[1], . . . , XQk

2[k−1]

(abbreviated as XQ[0], XQ[1], . . . , XQ[k−1], if there is no ambiguity), where every vertex

u0u1 ∈ V (XQk
2) has a fixed integer i in the last position u1 for i ∈ {0,1, . . . ,k − 1}. By

Proposition 9.1.1, each XQ[i] is isomorphic to XQk
1 for 0 ≤ i ≤ k− 1. By Theorem 9.2.1,

κ(XQ[i]) = 4. Let Fi = F ∩V (XQ[i]) for i ∈ {0,1,2, . . . ,k−1} with |F0| = max{|Fi| : 0 ≤

i ≤ k−1}. We consider the following cases.

Case 1. |F0| ≤ 3.

Since |F0| = max{|Fi| : 0 ≤ i ≤ k− 1}, |Fi| ≤ 3. By Theorem 9.2.1, XQ[i]−F is con-

nected.

Suppose that |F0| ≤ 2. Then |Fi| ≤ 2 for i ∈ {1,2, . . . ,k− 1}. Since there is a perfect

matching between XQ[i] and XQ[i+ 1] for i ∈ {0,1, . . . ,k− 2}, XQk
2 −F is connected, a

contradiction to that F is a cut of XQk
2.

Suppose that |F0| = 3. Then |Fi| ≤ 3 for i ∈ {1,2, . . . ,k − 1}. If |Fi| ≤ 2 for i ∈

{1,2, . . . ,k − 1}, then XQk
2 −F is connected, a contradiction to that F is a cut of XQk

2.
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If k ≥ 8, then XQk
2 −F is connected, a contradiction to that F is a cut of XQk

2. Therefore,

let k = 6 and there be Fi’s for i ∈ {1,2,3,4,5} such that |Fi|= 3. Since |F1|+ · · ·+ |F5| ≤ 8,

there are at most two Fi’s such that |Fi|= 3. Suppose that there is one Fi such that |Fi|= 3.

Without loss of generality, let that |F1|= 3. Then |F5| ≤ 2. Since there is a perfect matching

between XQ[i] and XQ[i+1] for i∈ {0,1, . . . ,4}, Q6
2[V (XQ[1]−F1)∪·· ·∪V (XQ[5]−F5)] is

connected. Since there is a perfect matching between XQ[0] and XQ[5], Q6
2−F is connected,

a contradiction to that F is a cut of Q6
2. Suppose that there are two Fi such that |Fi| = 3.

Without loss of generality, let that |F1|= 3 and |F5|= 3. Since there is a perfect matching

between XQ[i] and XQ[i+1] for i∈ {0,1, . . . ,4}, Q6
2[V (XQ[1]−F1)∪·· ·∪V (XQ[5]−F5)] is

connected. Since there is a perfect matching between XQ[0] and XQ[2], Q6
2−F is connected,

a contradiction to that F is a cut of Q6
2.

Case 2. |F0|= 4.

Since |F0| = max{|Fi| : 0 ≤ i ≤ k − 1}, |Fi| ≤ 4. Since |F1|+ · · ·+ |F5| ≤ 7, there is

at most one Fi such that |Fi| = 4 for i ∈ {1,2 . . . ,k − 1}. Without loss of generality, let

that |F1| = 4. Then |F2|+ · · ·+ |Fk−1| ≤ 3. By Theorem 9.2.1, XQ[i]−F is connected for

i ∈ {2,3, . . . ,k − 1}. Since there is a perfect matching between XQ[i] and XQ[i+ 1] for

i ∈ {0,1, . . . ,4}, XQk
2[V (XQ[2]−F2)∪·· ·∪V (XQ[k−1]−Fk−1)] is connected. By theorem

9.2.2, XQ[i]−Fi is connected or XQ[i]−Fi has two components, one of which is an isolated

vertex vi for i ∈ {0,1}. Let XQ[i]−Fi be connected for i ∈ {1,2}. Then |V (XQ[i]−Fi)| ≥ 2

for i ∈ {1,2}. By Proposition 9.1.4, XQk
2 −F is connected, a contradiction to that F is a

cut of XQk
2. Without loss of generality, suppose that XQ[1]−F1 has two components, one

of which is an isolated vertex and XQ[0]−F0 is connected. Since |V (XQ[0]−F0)| ≥ 2

and |F2|+ · · ·+ |Fk−1| ≤ 3, by Proposition 9.1.4, XQk
2[V (XQ[0]−F0)∪V (XQ[2]−F2)∪

·· ·∪V (XQ[k−1]−Fk−1)] is connected. Therefore, XQk
2 −F is connected, or XQk

2 −F has

two components, one of which is an isolated vertex. Then XQ[i]−Fi is disconnected for

i ∈ {1,2}. Suppose that k = 6. Then XQ[i]−Fi has two components, two of which are

isolated vertices for i ∈ {1,2}. Since |F2|+ · · ·+ |F5| ≤ 3, by theorem 9.2.2, XQ6
2[V (XQ[i]−

Fi)∪V (XQ[2]−F2)∪·· ·∪V (XQ[5]−F5)] is connected, or XQ6
2[V (XQ[i]−Fi)∪V (XQ[2]−

F2)∪ ·· · ∪V (XQ[5]−F5)] has two components, one of which is an isolated vertex vi for
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i ∈ {0,1}. Note that |N(v0)∩N(v1)| ≤ 2. Since |N(v0)∩N(v1)| ≤ 2 and |F2|+ · · ·+ |F5| ≤ 3,

XQ6
2 −F is connected, or XQ6

2 −F has two components, one of which is an isolated vertex.

Suppose that k ≥ 8. Since |V (XQ[0]−F0)| ≥ 3 and |F2|+ · · ·+ |Fk−1| ≤ 3, XQk
2[V (XQ[0]−

F0)∪V (XQ[2]−F2)∪ ·· · ∪V (XQ[k − 1]−Fk−1)] is connected, or XQk
2[V (XQ[0]−F0)∪

V (XQ[2]−F2)∪·· ·∪V (XQ[k−1]−Fk−1)] has two components, one of which is an isolated

vertex. If XQk
2[V (XQ[0]−F0)∪V (XQ[2]−F2)∪ ·· · ∪V (XQ[k− 1]−Fk−1)] is connected,

then XQk
2 −F is connected, or XQk

n −F has two components, one of which is an isolated

vertex. Then XQk
2[V (XQ[0]−F0)∪V (XQ[2]−F2)∪ ·· · ∪V (XQ[k − 1]−Fk−1)] has two

components, one of which is an isolated vertex. Since |V (XQ[1]−F1)| ≥ 3, XQk
2[V (XQ[1]−

F1)∪V (XQ[2]−F2)∪ ·· · ∪V (XQ[k − 1]−Fk−1)] is connected, or XQk
2[V (XQ[1]−F1)∪

V (XQ[2]−F2)∪·· ·∪V (XQ[k−1]−Fk−1)] has two components, one of which is an isolated

vertex. Suppose that XQk
2[V (XQ[i]−Fi)∪V (XQ[2]−F2)∪ ·· ·∪V (XQ[k−1]−Fk−1)] has

two components, one of which is an isolated vertex vi for i ∈ {0,1}. By Proposition 9.1.6,

|N(v0)∩N(v1)| ≤ 2. Since |N(v0)∩N(v1)| ≤ 2 and |F2|+ · · ·+ |Fk−1| ≤ 3, XQk
2 −F is

connected, or XQk
2 −F has two components, one of which is an isolated vertex.

Suppose that there are at most three Fi’s such that |Fi| ̸= 0. Then |Fi| ≤ 3 for i ∈

{2,3, . . . ,k−1}. By Theorem 9.2.1, XQ[i]−F is connected for i ∈ {2,3, . . . ,k−1}. Since

there is a perfect matching between XQ[i] and XQ[i+ 1], for i ∈ {0,1, . . . ,k − 2}, XQk
2

[V (XQ[2]−F2)∪·· ·∪V (XQ[k−1]−Fk−1)] is connected. By Proposition 9.1.4, XQk
2 −F is

connected, a contradiction to that F is a cut of XQk
2.

Case 3. |F0|= 5.

In this case, |F1|+ · · ·+ |Fk−1| ≤ 11−5= 6. Since |F0|=max{|Fi| : 0≤ i≤ k−1}, |Fi| ≤

5 for i ∈ {1,2, . . . ,k−1}. Suppose that |Fi| ≤ 3 for i ∈ {1,2, . . . ,k−1}. By Theorem 9.2.1,

XQ[i]−F is connected for i ∈ {1,2 . . . ,k−1}. Since there is a perfect matching between

XQ[i] and XQ[i+1] (or XQ[i] and XQ[i+2]), for i ∈ {0,1, . . . ,k−2}, XQk
2[V (XQ[1]−F1)∪

·· · ∪V (XQ[k− 1]−Fk−1)] is connected. Since |F2|+ · · ·+ |F5| ≤ 6, by Proposition 9.1.4,

XQk
2 −F is connected, or XQk

2 −F has two components, one of which is an isolated vertex.

Note that there is at most one Fi such that |Fi|= 4 for i ∈ {1,2, . . . ,k−1}. Without loss of

generality, let that |F1|= 4. Since |F1|+ · · ·+ |Fk−1| ≤ 6, there are at most three Fi’s such that
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|Fi| ̸= 0 for i ∈ {1,2, . . . ,k−1}. By Proposition 9.1.4, XQk
2−F is connected, a contradiction

to that F is a cut of XQk
2.

Note that there is at most one Fi such that |Fi|= 5 for i ∈ {1,2, . . . ,k−1}. Without loss of

generality, let that |F1|= 5. Since |F1|+ · · ·+ |Fk−1| ≤ 6, there are at most two Fi’s such that

|Fi| ̸= 0 for i ∈ {1,2, . . . ,k−1}. By Proposition 9.1.4, XQk
2−F is connected, a contradiction

to that F is a cut of XQk
2.

Case 4. |F0|= 6.

In this case, |F1|+ · · ·+ |Fk−1| ≤ 11−6 = 5. Suppose that |Fi| ≤ 3 for i ∈ {1,2, . . . ,k−1}.

By Theorem 9.2.1, XQ[i]−F is connected for i ∈ {1,2 . . . ,k−1}. Since there is a perfect

matching between XQ[i] and XQ[i+1], for i ∈ {0,1, . . . ,k−2}, XQk
2[V (XQ[1]−F1)∪·· ·∪

V (XQ[k−1]−Fk−1)] is connected. Since |F2|+ · · ·+ |F5| ≤ 5, by Proposition 9.1.4, XQk
2−F

is connected, or XQk
2 −F has two components, one of which is an isolated vertex.

Note that there is at most one Fi such that |Fi|= 4 for i ∈ {1,2, . . . ,k−1}. Without loss of

generality, let that |F1|= 4. Since |F1|+ · · ·+ |Fk−1| ≤ 5, there are at most two Fi’s such that

|Fi| ̸= 0 for i ∈ {1,2, . . . ,k−1}. By Proposition 9.1.4, XQk
2−F is connected, a contradiction

to that F is a cut of XQk
2.

Note that there is at most one Fi such that |Fi|= 5 for i ∈ {1,2, . . . ,k−1}. Without loss

of generality, let that |F1|= 5. Since |F1|+ · · ·+ |Fk−1| ≤ 5, there are at most one Fi such that

|Fi| ̸= 0 for i ∈ {1,2, . . . ,k−1}. By Proposition 9.1.4, XQk
2−F is connected, a contradiction

to that F is a cut of XQk
2.

Case 5. |F0|= 7.

In this case, k ≥ 8 and |F1|+ · · ·+ |F5| ≤ 4. Suppose that |Fi| ≤ 3 for i ∈ {1,2, . . . ,k−1}.

By Theorem 9.2.1, XQ[i]−F is connected for i ∈ {1,2 . . . ,k−1}. Since there is a perfect

matching between XQ[i] and XQ[i+1], for i ∈ {0,1, . . . ,k−2}, XQk
2[V (XQ[1]−F1)∪·· ·∪

V (XQ[k−1]−Fk−1)] is connected. Since |F2|+ · · ·+ |F5| ≤ 4, by Proposition 9.1.4, XQk
2−F

is connected, or XQk
2 −F has two components, one of which is an isolated vertex.

Note that there is at most one Fi such that |Fi|= 4 for i ∈ {1,2, . . . ,k−1}. Without loss

of generality, let that |F1|= 4. Since |F1|+ · · ·+ |Fk−1| ≤ 4, there are at most one Fi such that
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|Fi| ̸= 0 for i ∈ {1,2, . . . ,k−1}. By Proposition 9.1.4, XQk
2−F is connected, a contradiction

to that F is a cut of XQk
2.

Case 6. 8 ≤ |F0| ≤ 11.

In this case, |F1|+ · · ·+ |F5| ≤ 3. Since there is a perfect matching between XQ[i]

and XQ[i+ 1] for i ∈ {0,1, . . . ,k − 2}, Qk
2[V (XQ[1]−F1)∪ ·· · ∪V (XQ[k − 1]−Fk−1)] is

connected. By Proposition 9.1.4, XQk
2 −F is connected, a contradiction to that F is a cut of

XQk
2. 2

Then we show an important proposition for proving the nature connectivity of the

expanded k-ary n-cube.

Proposition 9.2.4 Let XQk
n be the expanded k-ary n-cube with even k ≥ 6, and let F ⊆

V (XQk
n) with |F | ≤ 8n−5. If XQk

n −F is disconnected, then XQk
n −F has two components,

one of which is an isolated vertex.

Proof: We can partition XQk
n into k disjoint subgraphs XQk

n[0], XQk
n[1], . . . , XQk

n[k−1]

(abbreviated as XQ[0], XQ[1], . . . , XQ[k−1], if there is no ambiguity), where every vertex

u0u1 . . .un−1 ∈V (XQk
n) has a fixed integer i in the last position un−1 for i ∈ {0,1, . . . ,k−1}.

By Proposition 9.1.1, each XQ[i] is isomorphic to XQk
n−1 for 0 ≤ i ≤ k − 1. Let F ⊆

V (XQk
n) with |F | ≤ 8n− 5 and let XQk

n −F is disconnected. Let Fi = F ∩V (XQ[i]) for

i ∈ {0,1,2, . . . ,k− 1} with |F0| = max{|Fi| : 0 ≤ i ≤ k− 1}. When n = 2, the result holds

by Propositions 9.2.3. We proceed by induction on n. Our induction hypothesis is that

XQk
n−1 −F has two components, one of which is an isolated vertex for |F | ≤ 8n−13 and

n ≥ 3 if XQk
n−1 −F is disconnected. By Proposition 9.1.1, each XQ[i] is isomorphic to

XQk
n−1 for 0 ≤ i ≤ k−1. We consider the following cases.

Case 1. |F0| ≤ 4n−5.

Since |F0|= max{|Fi| : 0 ≤ i ≤ k−1}, |Fi| ≤ 4n−5 for i ∈ {1,2, . . . ,k−1}. By Theorem

9.2.1, XQ[i]−F is connected for i ∈ {0,1, . . . ,k− 1}. Since kn−1 > 4n− 5+(4n− 5) =

8n−10 and there is a perfect matching between XQ[i] and XQ[i+1], for i ∈ {0,1, . . . ,k−2},

XQk
n −F is connected, a contradiction to that F is a cut of XQk

n.

Case 2. |F0|= 4n−4.
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In this case, |F1|+ · · ·+ |Fk−1| ≤ 8n−5− (4n−4) = 4n−1. Since |F0|= max{|Fi| : 0 ≤

i ≤ k−1}, |Fi| ≤ 4n−4 for i ∈ {1,2, . . . ,k−1}. Therefore, there is at most one Fi such that

|Fi|= 4n−4 for i ∈ {1,2, . . . ,k−1}. Without loss of generality, let that |F1|= 4n−4.

Suppose that there are four Fi’s such that |Fi| ̸= 0. Then |Fi| ≤ 1 for i ∈ {2,3, . . . ,k−1}.

By Theorem 9.2.1, XQ[i]−F is connected for i ∈ {2,3, . . . ,k−1}. Since there is a perfect

matching between XQ[i] and XQ[i+1], for i ∈ {0,1, . . . ,k−2}, XQk
n[V (XQ[2]−F2)∪·· ·∪

V (XQ[k−1]−Fk−1)] is connected. By theorem 9.2.2, XQ[i]−Fi is connected or XQ[i]−Fi

has two components, one of which is an isolated vertex vi for i ∈ {0,1}. Let XQ[i]−Fi be

connected for i ∈ {1,2}. Note that kn−1 − (4n−4)> 2 and hence |V (XQ[i]−Fi)| ≥ 2. By

Proposition 9.1.4, XQk
n −F is connected, a contradiction to that F is a cut of XQk

n. Without

loss of generality, suppose that XQ[1]−F1 has two components, one of which is an isolated

vertex and XQ[0]−F0 is connected. Since |V (XQ[0]−F0)| ≥ 2 and |F2|+ · · ·+ |Fk−1|= 3,

by Proposition 9.1.4, XQk
n[V (XQ[0]−F0)∪V (XQ[2]−F2)∪ ·· ·∪V (XQ[k−1]−Fk−1)] is

connected. Therefore, XQk
n−F is connected, or XQk

n−F has two components, one of which

is an isolated vertex. Then XQ[i]−Fi be disconnected for i∈ {1,2}. Since |V (XQ[0]−F0)| ≥

3 and |F2|+ · · ·+ |Fk−1| = 3, XQk
n[V (XQ[0]−F0)∪V (XQ[2]−F2)∪ ·· · ∪V (XQ[k− 1]−

Fk−1)] is connected, or XQk
n[V (XQ[0]−F0)∪V (XQ[2]−F2)∪ ·· · ∪V (XQ[k− 1]−Fk−1)]

has two components, one of which is an isolated vertex. If XQk
n[V (XQ[0]−F0)∪V (XQ[2]−

F2)∪·· ·∪V (XQ[k−1]−Fk−1)] is connected, then XQk
n −F is connected, or XQk

n −F has

two components, one of which is an isolated vertex. Then XQk
n[V (XQ[0]−F0)∪V (XQ[2]−

F2)∪ ·· · ∪V (XQ[k− 1]−Fk−1)] has two components, one of which is an isolated vertex

v0. Since |V (XQ[1]−F1)| ≥ 3, XQk
n[V (XQ[1]−F1)∪V (XQ[2]−F2)∪·· ·∪V (XQ[k−1]−

Fk−1)] is connected, or XQk
n[V (XQ[1]−F1)∪V (XQ[2]−F2)∪ ·· · ∪V (XQ[k− 1]−Fk−1)]

has two components, one of which is an isolated vertex. Suppose that XQk
n[V (XQ[i]−Fi)∪

V (XQ[2]−F2)∪·· ·∪V (XQ[k−1]−Fk−1)] has two components, one of which is an isolated

vertex vi for i ∈ {0,1}. By Proposition 9.1.6,|N(v0)∩N(v1)| ≤ 2. Since |N(v0)∩N(v1)| ≤ 2

and |F2|+ · · ·+ |Fk−1| ≤ 3, XQk
n −F is connected, or XQk

n −F has two components, one of

which is an isolated vertex.
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Suppose that there are three Fi’s such that |Fi| ≠ 0. Then |Fi| ≤ 2 for i ∈ {2,3, . . . ,k−1}.

By Theorem 9.2.1, XQ[i]−F is connected for i ∈ {2,3, . . . ,k−1}. Since there is a perfect

matching between XQ[i] and XQ[i + 1], for i ∈ {0,1, . . . ,k − 2}, XQk
n[V (XQ[2]− F2)∪

·· · ∪V (XQ[k− 1]−Fk−1)] is connected. By Proposition 9.1.4, XQk
n −F is connected, a

contradiction to that F is a cut of XQk
n.

Case 3. |F0|= 4n−3.

In this case, |F1|+ · · ·+ |Fk−1| ≤ 8n− 5− (4n− 3) = 4n− 2. Since |F0| = max{|Fi| :

0 ≤ i ≤ k − 1}, |Fi| ≤ 4n − 3 for i ∈ {1,2, . . . ,k − 1}. Suppose that |Fi| ≤ 4n − 5 for

i ∈ {1,2, . . . ,k − 1}. By Theorem 9.2.1, XQ[i]−F is connected for i ∈ {1,2 . . . ,k − 1}.

Since there is a perfect matching between XQ[i] and XQ[i+ 1], for i ∈ {0,1, . . . ,k − 2},

XQk
n[V (XQ[1]−F1)∪·· ·∪V (XQ[k−1]−Fk−1)] is connected. Since |F0|= 4n−3≤ 8n−13,

XQ[0]−F0 has two components, one of which is an isolated vertex v0 by the induction hy-

pothesis. Since kn−1 > 4n− 3+ 4n− 4+ 1 = 8n− 6, XQk
n −F is connected, or has two

components, one of which is an isolated.

Note that there is at most one Fi such that |Fi|= 4n−4 for i ∈ {1,2, . . . ,k−1}. Without

loss of generality, let that |F1| = 4n−4. Since |F1|+ · · ·+ |Fk−1| ≤ 4n−2, there are three

Fi’s such that |Fi| ≠ 0 for i ∈ {1,2, . . . ,k−1}. By Proposition 9.1.4, XQk
n −F is connected,

a contradiction to that F is a cut of XQk
n.

Note that there is at most one Fi such that |Fi|= 4n−3 for i ∈ {1,2, . . . ,k−1}. Without

loss of generality, let that |F1|= 4n−3. Since |F1|+ · · ·+ |Fk−1| ≤ 4n−2, there are two Fi’s

such that |Fi| ≠ 0 for i ∈ {1,2, . . . ,k− 1}. By Proposition 9.1.4, XQk
n −F is connected, a

contradiction to that F is a cut of XQk
n.

Case 4. |F0|= 4n−2.

In this case, |F1|+ · · ·+ |Fk−1| ≤ 8n−5− (4n−2) = 4n−3. Suppose that |Fi| ≤ 4n−5

for i ∈ {1,2, . . . ,k−1}. By Theorem 9.2.1, XQ[i]−F is connected for i ∈ {1,2 . . . ,k−1}.

Since there is a perfect matching between XQ[i] and XQ[i+ 1], for i ∈ {0,1, . . . ,k − 2},

XQk
n[V (XQ[1]−F1)∪·· ·∪V (XQ[k−1]−Fk−1)] is connected. Since |F0|= 4n−2≤ 8n−13,

XQ[0]−F0 has two components, one of which is an isolated vertex v0 by the induction

hypothesis. Since kn−1 > 4n−2+4n−4+1 = 8n−5, XQk
n −F is connected, or has two
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components, one of which is an isolated vertex. Note that there is at most one Fi such that

|Fi|= 4n−4 for i ∈ {1,2, . . . ,k−1}. Without loss of generality, let that |F1|= 4n−4. Since

|F2|+ · · ·+ |Fk−1| ≤ 1, By Proposition 9.1.4, XQk
n−F is connected, a contradiction to that F

is a cut of XQk
n.

Case 5. |F0|= 4n−1.

In this case, |F1|+ · · ·+ |Fk−1| ≤ 8n−5− (4n−1) = 4n−4. Suppose that |Fi| ≤ 4n−5

for i ∈ {1,2, . . . ,k−1}. By Theorem 9.2.1, XQ[i]−F is connected for i ∈ {1,2 . . . ,k−1}.

Since there is a perfect matching between XQ[i] and XQ[i+ 1], for i ∈ {0,1, . . . ,k − 2},

XQk
n[V (XQ[1]−F1)∪·· ·∪V (XQ[k−1]−Fk−1)] is connected. Since |F0|= 4n−1≤ 8n−13,

XQ[0]−F0 has two components, one of which is an isolated vertex v0 by the induction

hypothesis. Since kn−1 > 4n−1+4n−4+1 = 8n−4, XQk
n −F is connected, or has two

components, one of which is an isolated vertex. Note that there is at most one Fi such that

|Fi|= 4n−4 for i ∈ {1,2, . . . ,k−1}. Without loss of generality, let that |F1|= 4n−4. Since

|F2|+ · · ·+ |Fk−1|= 0, By Proposition 9.1.4, XQk
n−F is connected, a contradiction to that F

is a cut of XQk
n.

Case 6. 4n ≤ |F0| ≤ 8n−13.

In this case, |F1|+ · · ·+ |Fk−1| ≤ 8n− 5− 4n = 4n− 5. By Theorem 9.2.1, XQ[i]−F

is connected for i ∈ {1,2, . . . ,k − 1}. Since there is a perfect matching between XQ[i]

and XQ[i+1], for i ∈ {0,1, . . . ,k−2}, XQk
n[V (XQ[1]−F1)∪ ·· ·∪V (XQ[k−1]−Fk−1)] is

connected. Suppose that XQ[0] is connected. Since kn−1 > 8n−5, XQk
n −F is connected,

a contradiction to that F is a cut of XQk
n. Then XQ[0] is disconnected. By the induction

hypothesis, XQ[0]−F0 has two components, one of which is an isolated vertex. Since

kn−1 > 8n−5+1 = 8n−4, XQk
n −F is connected, or has two components, one of which is

an isolated vertex.

Case 7. 8n−12 ≤ |F0| ≤ 8n−5.

In this case, |F1|+ · · ·+ |Fk−1| ≤ 7. Since n ≥ 3, κ(XQ[i]) = 4(n− 1) ≥ 8 holds for

i ∈ {1,2, . . . ,k − 1} by Theorem 9.2.1. By Theorem 9.2.1, XQ[i]− Fi is connected for

i ∈ {1,2, . . . ,k− 1}. Since there is a perfect matching between XQ[i] and XQ[i+ 1], for

i ∈ {0,1, . . . ,k−2}, XQk
n[V (XQ[1]−F1)∪·· ·∪V (XQ[k−1]−Fk−1)] is connected. Suppose
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that XQ[0]−F0 is connected. Since kn−1 > 8n−5 and there is a perfect matching between

XQ[0] and XQ[1], XQk
n −F is connected, a contradiction to that F is a cut of XQk

n. Then

XQ[0]−F0 is disconnected. Let B1, . . . ,Bk (k ≥ 2) be the components of XQ[0]−F0. If k ≥ 3,

then, by Proposition 9.1.4, |(N(V (B1)∪V (B2))∩ (V (XQ[1])∪·· ·∪V (XQ[k−1]))| ≥ 8. If

|V (B j)| ≥ 2, then, by Proposition 9.1.4, |N(V (B j))∩ (V (XQ[1])∪·· ·∪V (XQ[k−1]))| ≥ 8

(1 ≤ j ≤ k). Combining this with |F1|+ · · ·+ |Fk−1| ≤ 7, we have that XQk
n −F is connected

or XQk
n −F has two components, one of which is an isolated vertex. 2

Lemma 9.2.3 Let A = {0 . . .0︸ ︷︷ ︸
n

,10 . . .0︸ ︷︷ ︸
n−1

}. If F1 = NXQk
n
(A), F2 = A∪NXQk

n
(A), then |F1| =

8n−4, |F2|= 8n−2, δ (XQk
n−F1)≥ 1, and δ (XQk

n−F2)≥ 1 (n ≥ 2 or n = 1 and k ≥ 8)(See

Fig. 5.3).

Proof: By A = {0 . . .0︸ ︷︷ ︸
n

,10 . . .0︸ ︷︷ ︸
n−1

}, we have XQk
n[A] = K2. From calculating, we have

|F1| = |NXQk
n
(A)| = 8n− 4 and |F2| = |A|+ |F1| = 8n− 2 by Proposition 9.1.3. Suppose

n = 1 and k ≥ 8. From Fig. 2.10, XQk
1 −F2 is connected. Therefore, δ (XQk

1 −F1)≥ 1 and

δ (XQk
1 −F2)≥ 1. Let n ≥ 2, k ≥ 8 and x ∈V (XQk

n)\F2. By Proposition 9.1.6, |NXQk
n
(x)∩

F2)| ≤ 4. Therefore, δ (XQk
n −F2)≥ 4n−4 ≥ 1. Let n ≥ 3, k = 6 and x ∈V (XQk

n)\F2. By

Proposition 9.1.6, |NXQk
n
(x)∩F2)| ≤ 8. Therefore, δ (XQk

n −F2)≥ 4n−8 ≥ 1.

Let n = 2, k = 6 and x ∈ V (XQ6
2) \F2. Then V (XQ[0])−F2 = /0. Suppose that x ∈

V (XQ[i]) \F2 for i ∈ {1,2, . . . ,5}. Let u = 00 and v = 10. If x ∈ {01,02,03,04,05}, then

x = 03.

Note |N(x)∩N(v)| = 0 and hence |NXQ6
2
(x)∩F2)| ≤ 4 in this case. Let x ∈ V (XQ[i])

\{01,02,03,04,05} for i ∈ {1,2,3,4,5}. Since |N(u)∩V (XQ[i])| ≤ 1 for i ∈ {1,2,3,4,5},

|N(x)∩V (XQ[0])| ≤ 1, |N(u)∩N(x)| ≤ 2 holds. Similarly, |N(v)∩N(x)| ≤ 2. Therefore,

|NXQ6
2
(x)∩F2)| ≤ 4 and hence δ (XQ6

2 −F2) ≥ 4×2−4 ≥ 1. Note that XQ6
2 −F1 has two

parts XQ6
2 −F2 and XQ6

2[A] = K2. Note that δ (XQ6
2[A]) = 1. Therefore, δ (XQ6

2 −F1)≥ 1.

2

Theorem 9.2.4 Let XQk
n be the expanded k-ary n-cube with n ≥ 1 and even k ≥ 6, Then the

nature connectivity of XQk
n is 8n−4, i.e., κ∗(XQk

n) = 8n−4.
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Proof: Let A = {0 . . .0︸ ︷︷ ︸
n

,10 . . .0︸ ︷︷ ︸
n−1

} in Lemma 9.2.3. Then |N(A)|= 8n−4. Since N(A) is

a nature cut of XQk
n, κ∗(XQk

n)≤ 8n−4 holds.

By Proposition 9.2.4, if F ⊆ V (XQk
n) with |F | ≤ 8n− 5, then XQk

n −F is connected

or XQk
n −F has two components, one of which is an isolated vertex. Therefore, if F is a

nature cut of XQk
n, then |F | ≥ 8n−4. Combining this with κ∗(XQk

n)≤ 8n−4, we have that

κ∗(XQk
n) = 8n−4. 2

9.3 The Nature Diagnosability of Expanded k-Ary n-Cubes

under the PMC Model

In this section, we shall show the nature diagnosability of the expanded k-ary n-cube under

the PMC model.

Firstly we give the lower bound of the nature diagnosability of the expanded k-ary n-cube

under PMC model with even k ≥ 6.

Lemma 9.3.1 Let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then the nature

diagnosability of XQk
n under the PMC model is less than or equal to 8n−3, i.e., t1(XQk

n)≤

8n−3.

Proof: Let A be defined in Lemma 9.2.3, and let F1 = NXQk
n
(A), F2 = A∪NXQk

n
(A). By

Lemma 9.2.3, |F1|= 8n−4, |F2|= 8n−2, δ (XQk
n−F1)≥ 1 and δ (XQk

n−F2)≥ 1. Therefore,

F1 and F2 are both nature faulty sets of XQk
n with |F1| = 8n− 4 and |F2| = 8n− 2. Since

A = F1 △ F2 and NXQk
n
(A) = F1 ⊂ F2, there is no edge of XQk

n between V (XQk
n)\(F1 ∪F2)

and F1 △ F2. By Theorem 5.2.2, we can deduce that XQk
n is not nature (8n−2)-diagnosable

under the PMC model. Hence, by the definition of the nature diagnosability, we conclude

that the nature diagnosability of XQk
n is less than 8n−2, i.e., t1(XQk

n)≤ 8n−3. 2

Secondly we prove the upper bound of the nature diagnosability of the expanded k-ary

n-cube under PMC model with even k ≥ 6.
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Lemma 9.3.2 Let n ≥ 2 and let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then

the nature diagnosability of XQk
n under the PMC model is more than or equal to 8n−3, i.e.,

t1(XQk
n)≥ 8n−3.

Proof: By the definition of the nature diagnosability, it is sufficient to show that XQk
n is

nature (8n−3)-diagnosable. By Theorem 5.2.2, to prove XQk
n is nature (8n−3)-diagnosable,

it is equivalent to prove that there is an edge uv ∈ E(XQk
n) with u ∈ V (XQk

n)\(F1 ∪F2)

and v ∈ F1 △ F2 for each distinct pair of nature faulty subsets F1 and F2 of V (XQk
n) with

|F1| ≤ 8n−3 and |F2| ≤ 8n−3.

We prove this statement by contradiction. Suppose that there are two distinct nature

faulty subsets F1 and F2 of V (XQk
n) with |F1| ≤ 8n−3 and |F2| ≤ 8n−3, but the vertex set

pair (F1,F2) does not satisfy the condition in Theorem 5.2.2, i.e., there are no edges between

V (XQk
n)\(F1 ∪F2) and F1 △ F2. Without loss of generality, assume that F2 \F1 ̸= /0. Suppose

V (XQk
n) = F1 ∪F2. By the definition of XQk

n, |F1 ∪F2|= kn. It is obvious that kn > 16n−6

for n ≥ 2. Since n ≥ 5, we have that kn = |V (XQk
n)| = |F1 ∪F2| = |F1|+ |F2|− |F1 ∩F2| ≤

|F1|+ |F2| ≤ 2(8n−3) = 16n−6, a contradiction. Therefore, V (XQk
n) ̸= F1 ∪F2.

Since there are no edges between V (XQk
n) \ (F1 ∪F2) and F1 △ F2, and F1 is a nature

faulty set, XQk
n −F1 has two parts XQk

n −F1 −F2 and XQk
n[F2 \F1] (for convenience). Thus,

δ (XQk
n − F1 − F2) ≥ 1 and δ (XQk

n[F2 \ F1]) ≥ 1. Similarly, δ (XQk
n[F1 \ F2]) ≥ 1 when

F1 \F2 ̸= /0. Therefore, F1 ∩F2 is also a nature faulty set. When F1 \F2 = /0, F1 ∩F2 = F1 is

also a nature faulty set. Since there are no edges between V (XQk
n −F1 −F2) and F1 △ F2,

F1∩F2 is a nature cut. By Theorem 9.2.4, |F1∩F2| ≥ 8n−4. Note that |F2\F1| ≥ 2. Therefore,

|F2|= |F2\F1|+ |F1 ∩F2| ≥ 2+8n−4 = 8n−2, which contradicts with that |F2| ≤ 8n−3.

So XQk
n is nature (8n−3)-diagnosable. By the definition of t1(XQk

n), t1(XQk
n)≥ 8n−3.

2

Combining Lemmas 9.3.1 and 9.3.2, we have the following theorem.

Theorem 9.3.3 Let n ≥ 2 and let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then

the nature diagnosability of XQk
n under the PMC model is 8n−3.
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9.4 The Nature Diagnosability of Expanded k-Ary n-Cubes

under the MM∗ Model

In this section, we shall show the nature diagnosability of the expanded k-ary n-cube under

the MM∗ model.

Lemma 9.4.1 Let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then the nature

diagnosability of XQk
n under the MM∗ model is less than or equal to 8n−3, i.e., t1(XQk

n)≤

8n−3.

Proof: Let A, F1 and F2 be defined in Lemma 9.2.3(See Fig. 5.3). By the Lemma

9.2.3, |F1|= 8n−4, |F2|= 8n−2, δ (XQk
n −F1)≥ 1 and δ (XQk

n −F2)≥ 1. So both F1 and

F2 are nature faulty sets. By the definitions of F1 and F2, F1 △ F2 = A. Note F1 \F2 = /0,

F2 \F1 = A and (V (XQk
n) \ (F1 ∪F2))∩A = /0. Therefore, both F1 and F2 are not satisfied

with any condition in Theorem 5.3.2, and XQk
n is not nature (8n−2)-diagnosable. Hence,

t1(XQk
n)≤ 8n−3. 2

Lemma 9.4.2 Let n ≥ 2 and let XQk
n be the expanded k-ary n-cube with even k ≥ 6. Then

the nature diagnosability of XQk
n under the MM∗ model is more than or equal to 8n−3, i.e.,

t1(XQk
n)≥ 8n−3.

Proof: By the definition of nature diagnosability, it is sufficient to show that XQk
n is

nature (8n−3)-diagnosable. By Theorem 5.3.2, suppose, on the contrary, that there are two

distinct nature faulty subsets F1 and F2 of XQk
n with |F1| ≤ 8n− 3 and |F2| ≤ 8n− 3, but

the vertex set pair (F1,F2) does not satisfy any condition in Theorem 5.3.2. Without loss

of generality, assume that F2 \F1 ̸= /0. Similarly to the discussion on V (XQk
n) ̸= F1 ∪F2 in

Lemma 9.3.2, we can deduce V (XQk
n) ̸= F1 ∪F2. Therefore, V (XQk

n) ̸= F1 ∪F2.

Claim 1. XQk
n −F1 −F2 has no isolated vertex.

Suppose, on the contrary, that XQk
n −F1 −F2 has at least one isolated vertex w. Since

F1 is a nature faulty set, there is a vertex u ∈ F2 \F1 such that u is adjacent to w. Since the

vertex set pair (F1,F2) does not satisfy any condition in Theorem 5.3.2, there is at most one
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vertex u ∈ F2 \F1 such that u is adjacent to w. Thus, there is just a vertex u ∈ F2 \F1 such

that u is adjacent to w. Assume F1 \F2 = /0. Then F1 ⊆ F2. Since F2 is a nature faulty set,

XQk
n −F2 = XQk

n −F1 −F2 has no isolated vertex, a contradiction. Therefore, let F1 \F2 ̸= /0

as follows. Similarly, we can deduce that there is just a vertex v ∈ F1 \F2 such that v is

adjacent to w. Let W ⊆V (XQk
n)\ (F1 ∪F2) be the set of isolated vertices in XQk

n[V (XQk
n)\

(F1 ∪F2)], and let H be the subgraph induced by the vertex set V (XQk
n) \ (F1 ∪F2 ∪W ).

Then for any w ∈ W , there are (4n− 2) neighbors in F1 ∩F2. Since |F2| ≤ 8n− 3, we

have ∑w∈W |NXQk
n[(F1∩F2)∪W ](w)| = |W |(4n− 2) ≤ ∑v∈F1∩F2 dXQk

n
(v) ≤ |F1 ∩F2|(4n− 2) ≤

(|F2|−1)(4n−2)≤ (8n−4)(4n−2) = 32n2 −32n+8. It follows that |W | ≤ 32n2−32n+8
4n−2 ≤

8n−4. Note |F1 ∪F2| = |F1|+ |F2|− |F1 ∩F2| ≤ 2(8n−3)− (4n−2) = 12n−4. Suppose

V (H) = /0. Then kn = |V (XQk
n)| = |F1 ∪F2|+ |W | ≤ 12n− 4+ 8n− 4 = 20n− 8. This

is a contradiction to n ≥ 2. So V (H) ̸= /0. Since the vertex set pair (F1,F2) does not

satisfy the condition (1) of Theorem 5.3.2, and any vertex of V (H) is not isolated in H, we

induce that there is no edge between V (H) and F1 △ F2. Thus, F1 ∩F2 is a vertex cut of

XQk
n and δ (XQk

n − (F1 ∩F2)) ≥ 1, i.e., F1 ∩F2 is a nature cut of XQk
n. By Theorem 9.2.4,

|F1 ∩F2| ≥ 8n− 4. Because |F1| ≤ 8n− 3, |F2| ≤ 8n− 3, and neither F1 \F2 nor F2 \F1 is

empty, we have |F1 \F2|= |F2 \F1|= 1. Let F1 \F2 = {v1} and F2 \F1 = {v2}. Then for any

vertex w ∈W , w are adjacent to v1 and v2. According to Proposition 9.1.6, there are at most

three common neighbors for any pair of vertices in XQk
n when k ≥ 8, it follows that there are

at most two isolated vertices in XQk
n −F1 −F2, i.e., |W | ≤ 2.

Suppose that there is exactly one isolated vertex v in XQk
n −F1 −F2. Let v1 and v2 be

adjacent to v. Then NXQk
n
(v) \ {v1,v2} ⊆ F1 ∩F2, NXQk

n
(v1) \ {v,v2} ⊆ F1 ∩F2, NXQk

n
(v2) \

{v,v1}⊆F1∩F2, |(NXQk
n
(v)\{v1,v2})∩(NXQk

n
(v1)\{v,v2})| ≤ 1 and |(NXQk

n
(v)\{v1,v2})∩

(NXQk
n
(v2) \ {v,v1})| ≤ 1 and |[NXQk

n
(v1) \ {v}]∩ [NXQk

n
(v2) \ {v}]| ≤ 1. Thus, |F1 ∩F2| ≥

|NXQk
n
(v)\{v1,v2}|+ |NXQk

n
(v1)\{v,v2}|+ |NXQk

n
(v2)\{v,v1}|=(4n−2)+(4n−2)+(4n−

2)− 3 = 12n− 9. It follows that |F2| = |F2 \F1|+ |F1 ∩F2| ≥ 1+ 12n− 9 = 12n− 8 >

8n−3 (n ≥ 2), which contradicts |F2| ≤ 8n−3.

Suppose that there are exactly two isolated vertices v and w in XQk
n −F1 −F2. Let v1

and v2 be adjacent to v and w, respectively. Then NXQk
n
(v)\{v1,v2} ⊆ F1 ∩F2, NXQk

n
(w)\
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{v1,v2}⊆F1∩F2, NXQk
n
(v1)\{v,w,v2}⊆F1∩F2, NXQk

n
(v2)\{v,w,v1}⊆F1∩F2, |(NXQk

n
(v)\

{v1,v2})∩ (NXQk
n
(v1)\{v,w,v2})| ≤ 1 and |(NXQk

n
(v)\{v1,v2})∩ (NXQk

n
(v2)\{v,w,v1})| ≤

1. |(NXQk
n
(w)\{v1,v2})∩(NXQk

n
(v1)\{v,w,v2})| ≤ 1 and |(NXQk

n
(w)\{v1,v2})∩(NXQk

n
(v2)\

{v,w,v1})| ≤ 1. By Proposition 9.1.6, there are at most two common neighbors for any pair

of vertices in XQk
n. Thus, it follows that |(NXQk

n
(v1)\{v,w,v2})∩(NXQk

n
(v2)\{v,w,v1})|= 0

and |(NXQk
n
(v)\{v1,v2})∩(NXQk

n
(w)\{v1,v2})|= 0. Thus, |F1∩F2| ≥ |NXQk

n
(v)\{v1,v2}|+

|NXQk
n
(w)\{v1,v2}|+ |NXQk

n
(v1)\{v,w,v2}|+ |NXQk

n
(v2)\{v,w,v1}|= (4n−2)+(4n−2)+

(4n−3)+(4n−3)−1−1−1−1 = 16n−14. It follows that |F2|= |F2 \F1|+ |F1 ∩F2| ≥

1+16n−14 = 16n−13 > 8n−3 (n ≥ 2), which contradicts |F2| ≤ 8n−3.

Suppose that k = 6, and v1 and v2 are adjacent. Proposition 9.1.6, |N(v1)∩N(v2)| ≤ 2.

Therefore, |W | ≤ 2.

Suppose that there is exactly one isolated vertex v in XQk
n −F1 −F2. Let v1 and v2 be

adjacent to v. Then NXQk
n
(v) \ {v1,v2} ⊆ F1 ∩F2, NXQk

n
(v1) \ {v,v2} ⊆ F1 ∩F2, NXQk

n
(v2) \

{v,v1}⊆F1∩F2, |(NXQk
n
(v)\{v1,v2})∩(NXQk

n
(v1)\{v,v2})| ≤ 1 and |(NXQk

n
(v)\{v1,v2})∩

(NXQk
n
(v2) \ {v,v1})| ≤ 1 and |[NXQk

n
(v1) \ {v}]∩ [NXQk

n
(v2) \ {v}]| ≤ 1. Thus, |F1 ∩F2| ≥

|NXQk
n
(v)\{v1,v2}|+ |NXQk

n
(v1)\{v,v2}|+ |NXQk

n
(v2)\{v,v1}|=(4n−2)+(4n−2)+(4n−

2)− 3 = 12n− 9. It follows that |F2| = |F2 \F1|+ |F1 ∩F2| ≥ 1+ 12n− 9 = 12n− 8 >

8n−3 (n ≥ 2), which contradicts |F2| ≤ 8n−3.

Suppose that there are exactly two isolated vertices v and w in XQk
n −F1 −F2. Let v1

and v2 be adjacent to v and w, respectively. Then NXQk
n
(v)\{v1,v2} ⊆ F1 ∩F2, NXQk

n
(w)\

{v1,v2}⊆F1∩F2, NXQk
n
(v1)\{v,w,v2}⊆F1∩F2, NXQk

n
(v2)\{v,w,v1}⊆F1∩F2, |(NXQk

n
(v)\

{v1,v2})∩ (NXQk
n
(v1)\{v,w,v2})| ≤ 1 and |(NXQk

n
(v)\{v1,v2})∩ (NXQk

n
(v2)\{v,w,v1})| ≤

1. |(NXQk
n
(w)\{v1,v2})∩(NXQk

n
(v1)\{v,w,v2})| ≤ 1 and |(NXQk

n
(w)\{v1,v2})∩(NXQk

n
(v2)\

{v,w,v1})| ≤ 1. By Proposition 9.1.6, there are at most two common neighbors for any pair

of vertices in XQk
n |(NXQk

n
(v) \ {v1,v2})∩ (NXQk

n
(w) \ {v1,v2})| = 0. Thus, it follows that

|(NXQk
n
(v1)\{v,w,v2})∩ (NXQk

n
(v2)\{v,w,v1})|= 0 and |(NXQk

n
(v)\{v1,v2})∩ (NXQk

n
(w)\

{v1,v2})| = 0. Thus, |F1 ∩F2| ≥ |NXQk
n
(v) \ {v1,v2}|+ |NXQk

n
(w) \ {v1,v2}|+ |NXQk

n
(v1) \

{v,w,v2}|+ |NXQk
n
(v2) \ {v,w,v1}| = (4n− 2) + (4n− 2) + (4n− 3) + (4n− 3)− 1− 1−
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1− 1 = 16n− 14. It follows that |F2| = |F2 \F1|+ |F1 ∩F2| ≥ 1+ 16n− 14 = 16n− 13 >

8n−3 (n ≥ 2), which contradicts |F2| ≤ 8n−3.

Suppose that k = 6, and v1 and v2 are not adjacent. Proposition 9.1.6, |N(v1)∩N(v2)| ≤ 4

and hence |W | ≤ 4. If |N(v1)∩N(v2)|= 4, then v1,v2 ∈V (XQ[i]). From Fig. 2.9 and 2.10,

XQ6
1[N(v1)∩N(v2)] is connected. Therefore, |W | ≤ 3. Since |N(v1)∩N(v2)| ̸= 3, |W | ≤ 2

holds.

Suppose that there is exactly one isolated vertex v in XQk
n −F1 −F2. Let v1 and v2 be

adjacent to v. Then NXQk
n
(v) \ {v1,v2} ⊆ F1 ∩ F2, NXQk

n
(v1) \ {v} ⊆ F1 ∩ F2, NXQk

n
(v2) \

{v} ⊆ F1 ∩ F2, |(NXQk
n
(v) \ {v1,v2})∩ (NXQk

n
(v1) \ {v})| ≤ 2 and |(NXQk

n
(v) \ {v1,v2})∩

(NXQk
n
(v2) \ {v})| ≤ 2 and |[NXQk

n
(v1) \ {v}]∩ [NXQk

n
(v2) \ {v}]| ≤ 3. Thus, |F1 ∩ F2| ≥

|NXQk
n
(v)\{v1,v2}|+ |NXQk

n
(v1)\{v}|+ |NXQk

n
(v2)\{v}|= (4n−2)+(4n−1)+(4n−1)−

2−2−3 = 12n−11. It follows that |F2|= |F2 \F1|+ |F1∩F2| ≥ 1+12n−11 = 12n−10 >

8n−3 (n ≥ 2), which contradicts |F2| ≤ 8n−3.

Suppose that there are exactly two isolated vertices v and w in XQk
n −F1 −F2. Let v1

and v2 be adjacent to v and w, respectively. Then NXQk
n
(v)\{v1,v2} ⊆ F1 ∩F2, NXQk

n
(w)\

{v1,v2} ⊆ F1 ∩F2, NXQk
n
(v1) \ {v,w} ⊆ F1 ∩F2, NXQk

n
(v2) \ {v,w} ⊆ F1 ∩F2, |(NXQk

n
(v) \

{v1,v2}) ∩ (NXQk
n
(v1) \ {v,w})| ≤ 2 and |(NXQk

n
(v) \ {v1,v2}) ∩ (NXQk

n
(v2) \ {v,w})| ≤ 2.

|(NXQk
n
(w) \ {v1,v2})∩ (NXQk

n
(v1) \ {v,w})| ≤ 2 and |(NXQk

n
(w) \ {v1,v2})∩ (NXQk

n
(v2) \

{v,w})| ≤ 2. By Proposition 9.1.6, there are at most four common neighbors for any

pair of vertices in XQk
n. Thus, it follows that |(NXQk

n
(v1)\{v,w})∩ (NXQk

n
(v2)\{v,w})| ≤ 2.

Thus, |F1 ∩F2| ≥ |NXQk
n
(v) \{v1,v2}|+ |NXQk

n
(w)\{v1,v2}|+ |NXQk

n
(v1)\{v,w}|+

|NXQk
n
(v2) \{v,w}|= (4n−2)+(4n−2)+(4n−2)+(4n−2)−2−2−2−2−2= 16n−18.

It follows that |F2|= |F2 \F1|+ |F1∩F2| ≥ 1+16n−18 = 16n−17 > 8n−3 (n ≥ 2), which

contradicts |F2| ≤ 8n−3.

The proof of Claim 1 is completed.

Let u ∈V (XQk
n)\ (F1 ∪F2). By Claim 1, u has at least one neighbor in XQk

n −F1 −F2.

Since the vertex set pair (F1,F2) does not satisfy any condition in Theorem 5.3.2, by the

condition (1) of Theorem 5.3.2, for any pair of adjacent vertices u,w ∈V (XQk
n)\ (F1 ∪F2),

there is no vertex v ∈ F1 △ F2 such that uw ∈ E(XQk
n) and vw ∈ E(XQk

n). It follows that u has
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no neighbor in F1 △ F2. By the arbitrariness of u, there is no edge between V (XQk
n)\(F1∪F2)

and F1 △ F2. Since F2 \F1 ̸= /0 and F1 is a nature faulty set, δXQk
n
([F2 \F1]) ≥ 1 and hence

|F2 \F1| ≥ 2. Since both F1 and F2 are nature faulty sets, and there is no edge between

V (XQk
n)\ (F1 ∪F2) and F1 △ F2, F1 ∩F2 is a nature cut of XQk

n. By Theorem 9.2.4, we have

|F1 ∩F2| ≥ 8n− 4. Therefore, |F2| = |F2 \F1|+ |F1 ∩F2| ≥ 2+(8n− 4) = 8n− 2, which

contradicts |F2| ≤ 8n− 3. Therefore, XQk
n is nature (8n− 3)-diagnosable and t1(XQk

n) ≥

8n−3. The proof is completed. 2

Combining Lemmas 9.4.1 and 9.4.2, we have the following theorem.

Theorem 9.4.3 Let n ≥ 2. Then the nature diagnosability of the expanded k-ary n-cube XQk
n

under the MM∗ model is 8n−3.

9.5 Conclusion

In this chapter, we investigated the problem of the nature diagnosability of the expanded

k-ary n-cube XQk
n under the PMC model and MM∗. As we discussed in Chapter 2, expanded

k-ary n-cube XQk
n is a generalization of k-ary n-cube. The results in this chapter provide

a solid base for further investigation on connectivity and diagnosability of expanded k-ary

n-cube XQk
n.



Chapter 10

The Tightly Super-3-extra Connectivity

& Diagnosability of Locally Twisted

Cubes

In this chapter, we show that LT Qn is tightly (4n− 9) super-3-extra-connected for n ≥ 6

and the 3-extra diagnosability of LT Qn under the PMC model and MM∗ model is 4n−6 for

n ≥ 5 and n ≥ 7, respectively. The results in this chapter is published in American Journal of

Computational Mathematics [88].

10.1 The Connectivity of Locally Twisted Cubes

Firstly we will list some known results on the structure of LT Qn which are useful for the

investigation.

Proposition 10.1.1 [72] Let LT Qn be the locally twisted cube. If two vertices u,v are

adjacent, then there is no common neighbor vertex of these two vertices, i.e., |N(u)∩N(v)|=

0. If two vertices u,v are not adjacent, then there are at most two common neighbor vertices

of these two vertices, i.e., |N(u)∩N(v)| ≤ 2.

Lemma 10.1.1 [109] Let LT Qn be the locally twisted cube. Then κ(LT Qn) = n.
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Lemma 10.1.2 [33] Let LT Qn be the locally twisted cube, and let S ⊆V (LT Qn) and n ≥ 3.

If LT Qn−S is disconnected and n≤ |S| ≤ 2n−3, then LT Qn−S has exactly two components,

one is trivial and the other is nontrivial.

Lemma 10.1.3 [73] Let LT Qn be the locally twisted cube. Then all cross-edges of LT Qn is

a perfect matching.

Lemma 10.1.4 [43] Let LT Qn be the locally twisted cube. Then κ(2)(LT Qn) = 4n−8.

For any four vertices in LT Qn, it is easy to have that there are only three different

LT Qn[{u,v,w,x}]’s: a 3-path, a graph isomorphic to K1,3 and 4-cycle. Based on this, we

could investigate the N(V (LT Qn[{u,v,w,x}])) and its cardinality.

Lemma 10.1.5 Let LT Qn be the locally twisted cube. If P = uvwx is a 3-path in LT Qn and

ux /∈ E(LT Qn) for n ≥ 3, then |N(V (P))| ≥ 4n−9.

Proof: We decompose LT Qn into 0LT Qn−1 and 1LT Qn−1. Then 0LT Qn−1 and 1LT Qn−1

are isomorphic to LT Qn−1. Without loss of generality, we have the following cases.

Case 1 . u,x ∈V (0LT Qn−1) and v,w ∈V (1LT Qn−1).

Since u ∈ V (0LT Qn−1), v ∈ V (1LT Qn−1) and u,v are adjacent, by Proposition 10.1.1,

u,v have no common neighbor vertices. Similarly, x,w have no common neighbor vertices

and v,w have no common neighbor vertices. Since u ∈V (0LT Qn−1), w ∈V (1LT Qn−1), u,w

are not adjacent, v is a common neighbor vertex of u,w, x ∈V (0LT Qn−1) and x is a neighbor

vertex of w, by Lemma 10.1.3, |(N(u)∩N(w))\{v}|= 0. Similarly, |(N(x)∩N(v))\{w}|=

0. Since u and x are not adjacent, by proposition 10.1.1, |N(u)∩N(x)| ≤ 2. Therefore,

|N(V (P))| ≥ 2(n−1)+2(n−2)−2 = 4n−8.

Case 2 . u ∈V (0LT Qn−1) and v,w,x ∈V (1LT Qn−1).

Since u,v are adjacent, by Proposition 10.1.1, |N(u)∩N(v)| = 0. Similarly, |N(v)∩

N(w)| = 0, |N(x)∩N(w)| = 0. And since u ∈ V (0LT Qn−1), w ∈ V (1LT Qn−1), u,w are

not adjacent and v is the common neighbor vertex of u and w, by Lemma 10.1.3, |(N(u)∩

N(w))\{v}| ≤ 1. Since u,x are not adjacent, u ∈V (0LT Qn−1), x ∈V (1LT Qn−1), by Lemma

10.1.3, |N(u)∩N(x)| ≤ 1. Since w is the common neighbor vertex of v and x and v,x
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are not adjacent, by proposition 10.1.1, |(N(v)∩N(x))\{w}| ≤ 1. Therefore, |N(P)| ≥

2(n−1)+2(n−2)−3 = 4n−9.

Case 3 . u,v ∈V (0LT Qn−1) and w,x ∈V (1LT Qn−1).

Since u,v are adjacent, by Proposition 10.1.1, |N(u)∩N(v)| = 0. Similarly, |N(v)∩

N(w)| = 0, |N(w)∩N(x)| = 0. Since u ∈ V (0LT Qn−1), x ∈ V (1LT Qn−1) and u, x are not

adjacent, by proposition 10.1.1, |N(u)∩N(x)| ≤ 2. If |(N(u)∩N(w)) \ {v}| = 1, then, by

Lemma 10.1.3, |N(u)∩N(x)| ≤ 1. If |(N(u)∩N(w)) \ {v}| = 0, then, by Lemma 10.1.3,

|N(u)∩N(x)| ≤ 2. Therefore, |N(V (P))| ≥ 2(n−1)+2(n−2)−2 = 4n−8.

In conclusion, |N(V (P))| ≥ 4n−9. 2

As follow we have another structure, which is formed by four vertices. We investigate

the N(V (LT Qn[{u,v,w,x}])) and its cardinality.

Lemma 10.1.6 Let LT Qn be the locally twisted cube. If LT Qn[{u,v,w,x}] is isomorphic to

K1,3 for n ≥ 3 and d(u) = 3, then |N(V (LT Qn[{u,v,w,x}]))| ≥ 4n−9.

Proof: Since d(u) = 3 and LT Qn[{u,v,w,x}] is isomorphic to K1,3, we have d(v) = 1,

d(w) = 1 and d(x) = 1. Since v,w are not adjacent and u is a common neighbor vertex of

v, w, by Proposition 10.1.1, (|N(v)∩N(w))\{u}| ≤ 1. Similarly, |(N(v)∩N(x))\{u}| ≤ 1,

|(N(w)∩N(x))\{u}| ≤ 1. Therefore, |N(V (LT Qn[{u,v,w,x}]))| ≥ 3(n−1)+(n−3)−3 =

4n−9. 2

If LT Qn[{u,v,w,x}] is a 4-cycle, then |N(V (LT Qn[{u,v,w,x}]))| = 4n−8. Combining

this with Lemmas 10.1.5 and 10.1.6, we have the following corollary.

Corollary 10.1.7 Let LT Qn be the locally twisted cube and let H be a connected subgraph

of LT Qn. If |V (H)| ≥ 4, then |N(V (H))| ≥ 4n−9.

Here we prove a lemma as follow since it will be used in the proofs to find the lower

bounds of the 3-extra diagnosability of LT Qn under the PMC model and MM∗ model, where

n ≥ 4.

Lemma 10.1.8 Let A = {0 · · ·0001,0 · · ·0111,0 · · ·0101,0 · · ·0100} and let LT Qn be the

locally twisted cube with n ≥ 4. If F1 = NLT Qn(A), F2 = F1 ∪A, where n ≥ 4, then |F1| =
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4n−9, |F2|= 4n−5, F1 is a 3-extra cut of LT Qn, LT Qn−F1 has two components LT Qn−F2

and LT Qn[A], |V (LT Qn −F2)| ≥ 4, and |A| ≥ 4.

Proof: According to the definition, LT Qn[A] is a 3-path and |A|= 4. By Lemma 10.1.5,

|F1| ≥ 4n−9. From Fig. 2.11, we have |F1|= 3. By the definition of LT Qn, |F1|= 3+4(n−

3) = 4n−9. Therefore, |F2|= |F1|+ |A|= (4n−9)+4 = 4n−5. Let F i
2 =V (iLT Qn−1)∩F2,

i ∈ {0,1}.

To prove LT Qn −F2 has two components and |V (LT Qn −F2)| ≥ 4, we first claim the

following.

Claim 1 . LT Qn −F2 is connected for n ≥ 4.

we prove by induction on n. For n = 4, A = {0001,0111,0101,0100}, F1 = {0000,0011,

0110,1001,1011,1101,1100}. It is easy to see that LT Q4 −F2 is connected (See Fig. 2.12).

When n = 5, A = {00001,00111,00101,00100}, F1
2 = {11001,11110,11111,10100} (See

Fig. 2.13). It is clear that 1LT Qn−1 −F1
2 is connected (See Fig. 2.13). We discompose

LT Qn into 0LT Qn−1 and 1LT Qn−1. Assume that n ≥ 6, the result holds for LT Qn−1. Then

0LT Qn−1−F0
2 is connected. Note that A⊆V (0LT Qn−1) and |N(A)∩V (1LT Qn−1)|= 4.nBy

Lemma 10.1.1, 1LT Qn−1 −F1
2 is connected. By inductive hypothesis, 0LT Qn−1 −F0

2 is

connected. Since 2n−1 > 4n−5, by Lemma 10.1.3, LT Qn −F2 is connected. The proof of

Claim 1 is completed.

By Claim 1, LT Qn −F1 has two components LT Qn −F2 and LT Qn[A] for n ≥ 4. Then

|V (LT Qn −F2)| = 2n − (4n− 5) ≥ 4 for n ≥ 4. And since |A| = 4, F1 is a 3-extra cut of

LT Qn. 2

In order to prove that LT Qn is tightly (4n-9) super-3-extra-connected, which will be

indispensable part in the proof to show the 3-extra diagnosability of LT Qn under the MM∗

model, we prove the following 2 lemmas and show an existing theorem and an existing

lemma, where n ≥ 6.

The number of different cases of LT Qn −F varies according to the different choice

of the interval of |F |, based on this, we divide |F | into two intervals: |F | ≤ 3n− 6 and

3n−5 ≤ |F | ≤ 4n−10, where n ≥ 5. We firstly list the result in the first interval |F | ≤ 3n−6.
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Lemma 10.1.9 [73] Let LT Qn(n ≥ 4) be the locally twisted cube. If |F | ≤ 3n− 6, then

LT Qn −F satisfies one of the following conditions:

(1) LT Qn −F has three components, two of which are isolated vertices;

(2) LT Qn −F has two components, one of which is an isolated vertex;

(3) LT Qn −F has two components, one of which is a K2;

(4) LT Qn −F is connected.

Theorem 10.1.10 [118] Let LT Qn be the locally twisted cube. Then κ̃(3)(LT Qn) = 4n−9

for n ≥ 4.

Here we specially pick up the case that |F | = 10 for n = 5 as the following lemma to

facilitate the understanding of Lemma 10.1.12.

Lemma 10.1.11 Let LT Qn be the locally twisted cube. If |F |= 10 for n = 5, then LT Q5−F

satisfies one of the following conditions:

(1) LT Q5 −F has four components, three of which are isolated vertices;

(2) LT Q5 −F has three components, one of which is isolated vertices and one of which

is a K2;

(3) LT Q5 −F has three components, two of which are isolated vertices;

(4) LT Q5 −F has two components, one of which is a path of length two;

(5) LT Q5 −F has two components, one of which is an isolated vertex;

(6) LT Q5 −F has two components, one of which is a K2;

(7) LT Q5 −F is connected.

Proof: We decompose LT Q5 into 0LT Q4 and 1LT Q4. Then 0LT Q4 and 1LT Q4 are

isomorphic to LT Q4. Suppose that Fi = F ∩V (iLT Q4), i ∈ {0,1}. Without loss of generality,

let |F0| ≥ |F1|. And since |F | = 10, 5 ≤ |F0| ≤ 10, 0 ≤ |F1| ≤ 5. Let Ci be the maximum

component of iLT Q4 −Fi, i ∈ {0,1}. We consider the following cases.

Case 1 . |F0|= 5.

Since |F0| = 5 and |F | = 10, |F1| = 10− 5 = 5. By Lemmas 10.1.1 and 10.1.2, both

0LT Q4 −F0 and 1LT Q4 −F1 are connected or has two components, one of which is an
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isolated vertex. Since 25−1−6−2≥ 1, by Lemma 10.1.3, LT Qn[V (C0)∪V (C1)] is connected.

Thus, LT Q5 −F satisfies one of conditions:

(1) LT Q5 −F has three components, two of which are isolated vertices;

(2) LT Q5 −F has two components, one of which is an isolated vertex;

(3) LT Q5 −F has two components, one of which is a K2;

(4) LT Q5 −F is connected.

Case 2 . |F0|= 6.

Since |F0|= 6 and |F |= 10, |F1|= 10−6 = 4. By Lemmas 10.1.1 and 10.1.2, 1LT Q4 −

F1 is connected or has two components, one of which is an isolated vertex. Since |F0|= 6,

by Lemma 10.1.9, 0LT Q4 −F0 satisfies one of the following conditions:

(1) 0LT Q4 −F0 has three components, two of which are isolated vertices;

(2) 0LT Q4 −F0 has two components, one of which is an isolated vertex;

(3) 0LT Q4 −F0 has two components, one of which is a K2;

(4) 0LT Q4 −F0 is connected.

Then LT Q5 −F satisfies one of the conditions (1)-(7).

Case 3 . |F0| ≥ 7.

Since |F0| ≥ 7 and |F | = 10, |F1| ≤ 10− 7 = 3. By Lemma 10.1.1, 1LT Q4 − F1 is

connected.

Suppose that 0LT Q4−F0 is connected. Since 25−1−10≥ 1, by Lemma 10.1.3, LT Qn−F

is connected.

Suppose that 0LT Q4 −F0 is not connected. Let the components in 0LT Q4 −F0 be G1,

G2, . . . , Gk for k ≥ 2 and |V (G1)| ≤ |V (G2)| ≤ . . .≤ |V (Gk)|. If |V (Gr)| ≥ 4(1 ≤ r ≤ k−1),

by Lemma 10.1.3, |N(V (Gr))∩V (1LT Q4)| ≥ 4. Combining this with |F1| ≤ 3, we have

that LT Q5[V (Gr)∪V (1LT Q4 −F1)] is connected. Therefore, Gr is not a component of

LT Q5 −F for |V (Gr)| ≥ 4. Therefore, LT Q5 −F is connected. The following we discuss

Gr is a component of LT Q5 −F with |V (Gr)| ≤ 3(1 ≤ r ≤ k−1).

If k = 5, by Lemma 10.1.3, |N(V (G1))∪N(V (G2))∪ . . .∪N(V (Gk−1))∩V (1LT Q4)| ≥ 4.

Combining this with |F1| ≤ 3, there is one Gr(1 ≤ r ≤ k − 1) such that LT Q5[V (Gr)∪
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V (1LT Q4 −F1)] is connected. Thus, k ≤ 4. Since |F1|= 3, k ≤ 4, and |V (Gr)| ≤ 3(1 ≤ r ≤

k−1), LT Q5 −F satisfies one of the conditions (1)-(7). 2

Lemma 10.1.12 Let LT Qn be the locally twisted cube. If 3n−5 ≤ |F | ≤ 4n−10 for n ≥ 5,

then LT Qn −F satisfies one of the following conditions:

(1) LT Qn −F has four components, three of which are isolated vertices;

(2) LT Qn −F has three components, one of which is isolated vertices and one of which

is a K2;

(3) LT Qn −F has three components, two of which are isolated vertices;

(4) LT Qn −F has two components, one of which is a path of length two;

(5) LT Qn −F has two components, one of which is an isolated vertex;

(6) LT Qn −F has two components, one of which is a K2;

(7) LT Qn −F is connected.

Proof: By Lemma 10.1.11, the result holds for n = 5. We proceed by induction on n.

Assume n≥ 6 and the result holds for LT Qn−1, i.e., if 3n−5≤ |F | ≤ 4(n−1)−10= 4n−14,

then LT Qn−1 −F satisfies one of the conditions (1)-(7) in Lemma 10.1.12. The following

we prove LT Qn −F satisfies one of the conditions (1)-(7).

We decompose LT Qn into 0LT Qn−1 and 1LT Qn−1. Then 0LT Qn−1 and 1LT Qn−1 are

isomorphic to LT Qn−1. Suppose that Fi = F ∩V (iLT Qn−1), i ∈ {0,1}. Without loss of

generality, let |F0| ≥ |F1|. And since 3n−5 ≤ |F | ≤ 4n−10, n ≤ ⌈3n−5
2 ⌉ ≤ |F0| ≤ 4n−10,

0 ≤ |F1| ≤ ⌊4n−10
2 ⌋ ≤ 2n−5. Let Ci be the maximum component of iLT Qn−1−Fi, i ∈ {0,1}.

We consider the following cases.

Case 1 . n ≤ |F0| ≤ 3(n−1)−6 = 3n−9.

Since |F0| ≥ |F1| and |F | ≤ 4n− 10, (4n− 10)− (3n− 9) = n− 1 ≤ |F1| ≤ ⌊4n−10
2 ⌋ =

2n−5. By Lemmas 10.1.1 and 10.1.2, 1LT Qn−1 −F1 is connected or has two components,

one of which is an isolated vertex. Since n ≤ |F0| ≤ 3(n− 1)− 6 = 3n− 9, by lemma

10.1.9, 0LT Qn−1 −F0 satisfies one of the following conditions:(1) 0LT Qn−1 −F0 has three

components, two of which are isolated vertices; (2) 0LT Qn−1 −F0 has two components,

one of which is an isolated vertex; (3) 0LT Qn−1 −F0 has two components, one of which is
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a K2; (4) 0LT Qn−1 −F0 is connected. Since 2n−1 − (4n− 10)− 3 ≥ 1, by Lemma 10.1.3,

LT Qn[V (C0)∪V (C1)] is connected. Thus, LT Qn −F satisfies one of conditions (1)-(7) in

Lemma 10.1.12.

Case 2 . 3n−8 ≤ |F0| ≤ 4n−14.

Since |F0| ≥ |F1| and |F | ≤ 4n− 10, |F1| ≤ (4n− 10)− (3n− 8) = n− 2. By Lemma

10.1.1 , 1LT Qn−1 −F1 is connected. Since 3n−8 ≤ |F0| ≤ 4n−14, according to inductive

hypothesis, 0LT Qn−1 −F0 satisfies one of the following conditions:

(1) 0LT Qn−1 −F0 has four components, three of which are isolated vertices;

(2) 0LT Qn−1 −F0 has three components, one of which is isolated vertices and one of

which is a K2;

(3) 0LT Qn−1 −F0 has three components, two of which are isolated vertices;

(4) 0LT Qn−1 −F0 has two components, one of which is a path of length two;

(5) 0LT Qn−1 −F0 has two components, one of which is an isolated vertex;

(6) 0LT Qn−1 −F0 has two components, one of which is a K2;

(7) 0LT Qn−1 −F0 is connected.

Thus, LT Qn −F satisfies one of the conditions (1)-(7) in Lemma 10.1.12.

Case 3 . 4n−13 ≤ |F0| ≤ 4n−10.

Since 4n−13 ≤ |F0| ≤ 4n−10 and |F | ≤ 4n−10, |F1| ≤ (4n−10)− (4n−13) = 3. By

Lemma 10.1.1, 1LT Qn−1 −F1 is connected.

Suppose that 0LT Qn−1−F0 is connected. Since 2n−1− (4n−10)≥ 1, by Lemma 10.1.3,

LT Qn −F is connected.

Suppose that 0LT Qn−1−F0 is not connected. Let the components in 0LT Qn−1−F0 be G1,

G2, . . . , Gk for k ≥ 2 and |V (G1)| ≤ |V (G2)| ≤ . . .≤ |V (Gk)|. If |V (Gr)| ≥ 4(1 ≤ r ≤ k−1),

by Lemma 10.1.3, |N(V (Gr))∩V (1LT Qn−1)| ≥ 4. Combining this with |F1| ≤ (4n−10)−

(4n−13) = 3, we have that LT Qn[V (Gr)∪V (1LT Qn−1 −F1)] is connected. Therefore, Gr

is not a component of LT Qn −F for |V (Gr)| ≥ 4. Therefore, LT Qn −F is connected. The

following we discuss Gr is a component of LT Qn −F with |V (Gr)| ≤ 3(1 ≤ r ≤ k−1).

If k= 5, by Lemma 10.1.3, |N(V (G1))∪N(V (G2))∪. . .∪N(V (Gk−1))∩V (1LT Qn−1)| ≥

4. Combining this with |F1| ≤ 3, there is one Gr(1 ≤ r ≤ k− 1) such that LT Qn[V (Gr)∪
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V (1LT Qn−1 −F1)] is connected. Thus, k ≤ 4. Since |F1| ≤ 3, |V (Gr)| ≤ 3(1 ≤ r ≤ k− 1)

and k ≤ 4, LT Qn −F satisfies one of the conditions (1)-(7). 2

Based on the above Lemma 10.1.9, Lemma 10.1.11, Lemma 10.1.12 and Theorem

10.1.10, we start to prove the following theorem.

Theorem 10.1.13 Let LT Qn be the locally twisted cube for n ≥ 6. Then LT Qn is tightly

(4n−9) super-3-extra-connected.

Proof: By Theorem 10.1.10, we know for any minimum 3-extra cut F ⊂ V (LT Qn),

|F | = 4n− 9. We decompose LT Qn into 0LT Qn−1 and 1LT Qn−1. Then 0LT Qn−1 and

1LT Qn−1 are isomorphic to LT Qn−1. Suppose that Fi =F∩V (iLT Qn−1), i∈ {0,1}. Without

loss of generality, let |F0| ≥ |F1|. And since |F |= 4n−9, 2n−4 ≤ ⌈4n−9
2 ⌉ ≤ |F0| ≤ 4n−9,

0 ≤ |F1| ≤ ⌊4n−9
2 ⌋ ≤ 2n−5. Let Ci be the maximum component of iLT Qn−1 −Fi, i ∈ {0,1}.

We consider the following cases.

Case 1 . 2n−4 ≤ |F0| ≤ 3(n−1)−6 = 3n−9.

Since |F0| ≥ |F1| and |F |= 4n−9, |F1| ≤ 2n−5 holds.

By Lemmas 10.1.1 and 10.1.2, 1LT Qn−1 −F1 is connected or has two components, one

of which is an isolated vertex. Since 2n− 4 ≤ |F0| ≤ 3(n− 1)− 6 = 3n− 9, by lemma

10.1.9, 0LT Qn−1 −F0 satisfies one of the following conditions: (1) 0LT Qn−1 −F0 has three

components, two of which are isolated vertices; (2) 0LT Qn−1 −F0 has two components,

one of which is an isolated vertex; (3) 0LT Qn−1 −F0 has two components, one of which

is a K2; (4) 0LT Qn−1 −F0 is connected. Since 2n−1 − (4n−9)−3 ≥ 1, by Lemma 10.1.3,

LT Qn[V (C0)∪V (C1)] is connected. Then LT Qn−F satisfies one of the following conditions:

(1) LT Qn −F has four components, three of which are isolated vertices;

(2) LT Qn −F has three components, one of which is isolated vertices and one of which

is a K2;

(3) LT Qn −F has three components, two of which are isolated vertices;

(4) LT Qn −F has two components, one of which is a path of length two;

(5) LT Qn −F has two components, one of which is an isolated vertex;

(6) LT Qn −F has two components, one of which is a K2;
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(7) LT Qn −F is connected.

Thus, in this case, F is not a minimum 3-extra cut of LT Qn, a contradiction.

Case 2 . |F0|= 3n−8.

Since |F0| = 3n− 8 and |F | = 4n− 9, we have |F1| = (4n− 9)− (3n− 8) = n− 1. By

Lemmas 10.1.1 and 10.1.2, 1LT Qn−1−F1 is connected or has two components, one of which

is an isolated vertex. Since |F0|= 3n−8, by Lemma 10.1.12, 0LT Qn−1 −F0 satisfies one of

the following conditions:

(1) 0LT Qn−1 −F0 has four components, three of which are isolated vertices;

(2) 0LT Qn−1 −F0 has three components, one of which is isolated vertices and the other

of which is a K2;

(3) 0LT Qn−1 −F0 has three components, two of which are isolated vertices;

(4) 0LT Qn−1 −F0 has two components, one of which is a path of length two;

(5) 0LT Qn−1 −F0 has two components, one of which is an isolated vertex;

(6) 0LT Qn−1 −F0 has two components, one of which is a K2;

(7) 0LT Qn−1 −F0 is connected.

If 0LT Qn−1 −F0 satisfies the condition (4), i.e., 0LT Qn−1 −F0 has two components, one

of which is a path of length two, denoted by P= uvw, 1LT Qn−1−F1 has two components, one

of which is an isolated vertex x, and |N(x)∩V (P)|= 1, (N(V (P))∩V (1LT Qn−1))\{x} ⊆ F1,

then, by Lemma 10.1.3, LT Qn −F has one component which is a 3-path or a K1,3. Since

2n−1 − (4n−9)−3 ≥ 1 for n ≥ 6, LT Qn[C0 ∪C1] is connected. Thus, LT Qn −F exactly has

two components. Then the other component C satisfies |C|= 2n− (4n−9)−4 > 4 for n ≥ 6.

Otherwise, F is not a minimum 3-extra cut of LT Qn, a contradiction.

Case 3 . 3n−7 ≤ |F0| ≤ 4n−14.

Since |F0| ≥ |F1| and |F | ≤ 4n− 9, |F1| ≤ (4n− 9)− (3n− 7) = n− 2. By Lemma

10.1.1, 1LT Qn−1 −F1 is connected. Since 3n− 7 ≤ |F0| ≤ 4n− 14, by Lemma 10.1.12,

0LT Qn−1 −F0 satisfies one of the following conditions:

(1) 0LT Qn−1 −F0 has four components, three of which are isolated vertices;

(2) 0LT Qn−1 −F0 has three components, one of which is isolated vertices and the other

of which is a K2;
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(3) 0LT Qn−1 −F0 has three components, two of which are isolated vertices;

(4) 0LT Qn−1 −F0 has two components, one of which is a path of length two;

(5) 0LT Qn−1 −F0 has two components, one of which is an isolated vertex;

(6) 0LT Qn−1 −F0 has two components, one of which is a K2;

(7) 0LT Qn−1 −F0 is connected.

Thus, LT Qn −F satisfies one of the following conditions:

(1) LT Qn −F has four components, three of which are isolated vertices;

(2) LT Qn −F has three components, one of which is isolated vertices and one of which

is a K2;

(3) LT Qn −F has three components, two of which are isolated vertices;

(4) LT Qn −F has two components, one of which is a path of length two;

(5) LT Qn −F has two components, one of which is an isolated vertex;

(6) LT Qn −F has two components, one of which is a K2;

(7) LT Qn −F is connected.

In this case, F is not a minimum 3-extra cut of LT Qn, a contradiction.

Case 4 . |F0|= 4n−13.

Since |F0| = 4n− 13 and |F | = 4n− 9 for n ≥ 6, |F1| = (4n− 9)− (4n− 13) = 4. By

Lemma 10.1.1, 1LT Qn−1 −F1 is connected.

If there exists a 3-path P in 0LT Qn−1 −F0, then N(V (P))∩V (0LT Qn−1) ⊆ F0. By

Corollary 10.1.7, |N(V (P))| ≥ 4n−13 = |F0| in 0LT Qn−1 −F0. Therefore, N(V (P)) = F0

in 0LT Qn−1 −F0. Note that 2n−1 − (4n− 9)− 4 ≥ 1 for n ≥ 6, by Lemma 10.1.3, then

LT Qn[V (C0)∪V (C1)] is connected. Then LT Qn −F just has two components, one of which

is a 3-path.

If there exists a component K1,3 in 0LT Qn−1 −F0, then N0LT Qn−1(V (K1,3)) ⊆ F0. By

Corollary 10.1.7, |N(V (K1,3))| ≥ 4n−13 = |F0| in 0LT Qn−1−F0. Therefore, N(V (K1,3)) =

F0 in 0LT Qn−1 − F0. Note that 2n−1 − (4n − 9)− 4 ≥ 1 for n ≥ 6, by Lemma 10.1.3,

LT Qn −F just has two components, one of which is a K1,3.
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If there exists a 4-cycle C in 0LT Qn−1 − F0, then N0LT Qn−1(C)∩V (0LT Qn−1) ⊆ F0.

By Proposition 10.1.1, |N0LT Qn−1(V (C))| ≥ 4(n − 1 − 2) = 4n − 12 > 4n − 13 = |F0|, a

contradiction to |F0|= 4n−13. Therefore, 0LT Qn−1 −F0 has not a 4-cycle.

Case 5 . 4n−12 ≤ |F0| ≤ 4n−9.

Since 4n− 12 ≤ |F0| ≤ 4n− 9 and |F | ≤ 4n− 9, |F1| ≤ (4n− 9)− (4n− 12) = 3. By

Lemma 10.1.1, 1LT Qn−1 −F1 is connected.

Suppose that 0LT Qn−1 −F0 is connected. Since 2n−1 − (4n−9)≥ 1, by Lemma 10.1.3,

LT Qn −F is connected, a contradiction.

Suppose that 0LT Qn−1 −F0 is not connected. Let the components in 0LT Qn−1 −F0

be G1, G2, . . . , Gk for k ≥ 2 and |V (G1)| ≤ |V (G2)| ≤ . . . ≤ |V (Gk)|. If |V (Gr)| ≥ 4(1 ≤

r ≤ k−1), by Lemma 10.1.3, |N(V (Gr))∩V (1LT Qn−1)| ≥ 4. If k ≥ 5, by Lemma 10.1.3,

|N(V (G1))∪N(V (G2))∪ . . .∪N(V (Gk−1))∩V (1LT Qn−1)| ≥ 4. Combining this with |F1| ≤

(4n−9)− (4n−12) = 3, we have that LT Qn −F satisfies one of the following conditions:

(1) LT Qn −F has four components, three of which are isolated vertices;

(2) LT Qn −F has three components, one of which is isolated vertices and one of which

is a K2;

(3) LT Qn −F has three components, two of which are isolated vertices;

(4) LT Qn −F has two components, one of which is a path of length two;

(5) LT Qn −F has two components, one of which is an isolated vertex;

(6) LT Qn −F has two components, one of which is a K2;

(7) LT Qn −F is connected.

In this case, F is not a minimum 3-extra cut of LT Qn, a contradiction. 2

10.2 The 3-Extra Diagnosability of the Locally Twisted Cube

under the PMC Model

In this section, we shall show the 3-extra diagnosability of locally twisted cubes under the

PMC model.
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Here we give the necessary and sufficient condition of that a system (graph) G is g-extra

t-diagnosable under PMC model.

Theorem 10.2.1 [25, 112, 114] A system G = (V,E) is g-extra t-diagnosable under the

PMC model if and only if there is an edge uv ∈ E with u ∈V\(F1 ∪F2) and v ∈ F1 △ F2 for

each distinct pair of g-extra faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t.

Lemma 10.2.2 Let n ≥ 4. Then the 3-extra diagnosability of the locally twisted cube LT Qn

under the PMC model is less than or equal to 4n−6, i.e., t̃3(LT Qn)≤ 4n−6.

Proof: Let A be defined in Lemma 10.1.8, and let F1 = NLT Qn(A), F2 = A∪NLT Qn(A). By

Lemma 10.1.8, |F1|= 4n−9, |F2|= |A|+ |F1|= 4n−5, |V (LT Qn[A])| ≥ 4 and |V (LT Qn −

F2)| ≥ 4, F1 is a 3-extra cut of LT Qn. Therefore, F1 and F2 are 3-extra faulty sets of LT Qn

with |F1|= 4n−9 and |F2|= 4n−5. Since A = F1 △ F2 and NLT Qn(A) = F1 ⊂ F2, there is no

edge of LT Qn between V (LT Qn)\(F1 ∪F2) and F1 △ F2. By Theorem 10.2.1, we can deduce

that LT Qn is not 3-extra (4n−5)-diagnosable under PMC model. Hence, by the definition

of 3-extra diagnosability, we conclude that the 3-extra diagnosability of LT Qn is less than

4n−5, i.e., t̃3(LT Qn)≤ 4n−6. 2

Lemma 10.2.3 Let n ≥ 5. Then the 3-extra diagnosability of the locally twisted cube LT Qn

under the PMC model is more than or equal to 4n−6, i.e., t̃3(LT Qn)≥ 4n−6.

Proof: By the definition of 3-extra diagnosability, it is sufficient to show that LT Qn

is 3-extra (4n − 6)-diagnosable. By Theorem 10.2.1, to prove LT Qn is 3-extra (4n −

6)-diagnosable, it is equivalent to prove that there is an edge uv ∈ E(LT Qn) with u ∈

V (LT Qn)\(F1 ∪F2) and v ∈ F1 △ F2 for each distinct pair of 3-extra faulty subsets F1 and F2

of V (LT Qn) with |F1| ≤ 4n−6 and |F2| ≤ 4n−6.

Suppose, by way of contradiction, that there are two distinct 3-extra faulty subsets F1 and

F2 of LT Qn with |F1| ≤ 4n−6 and |F2| ≤ 4n−6, but the vertex set pair (F1,F2) is not satisfied

with the condition in Theorem 10.2.1, i.e., there are no edges between V (LT Qn)\(F1 ∪F2)

and F1 △ F2. Without loss of generality, assume that F2 \F1 ̸= /0.
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Assume V (LT Qn) = F1 ∪F2. Since n ≥ 5, we have that 2n = |V (LT Qn)| = |F1 ∪F2| =

|F1|+ |F2|−|F1∩F2| ≤ |F1|+ |F2| ≤ (4n−6)+(4n−6)= 8n−12, a contradiction. Therefore,

V (LT Qn) ̸= F1 ∪F2.

The following we discuss the case when F2 \F1 ̸= /0 and V (LT Qn) ̸= F1 ∪F2.

Since there are no edges between V (LT Qn) \ (F1 ∪ F2) and F1 △ F2, and F1 is a 3-

extra faulty set, LT Qn −F1 has two parts LT Qn −F1 −F2 and LT Qn[F2 \F1]. Thus, every

component Gi of LT Qn−F1−F2 satisfies |V (Gi)| ≥ 4 and every component Ci of LT Qn[F2 \

F1] satisfies |V (Ci)| ≥ 4. Similarly, every component C′
i of LT Qn[F1\F2] satisfies |V (C′

i)| ≥ 4

when F1 \F2 ̸= /0. Therefore, F1 ∩F2 is also a 3-extra faulty set. Since there are no edges

between V (LT Qn −F1 −F2) and F1 △ F2, F1 ∩F2 is also a 3-extra cut. When F1 \F2 = /0,

F1∩F2 = F1 is also a 3-extra faulty set. Since there are no edges between V (LT Qn−F1−F2)

and F1 △ F2, F1 ∩F2 is a 3-extra cut. By Theorem 10.1.10, |F1 ∩F2| ≥ 4n− 9. Therefore,

|F2|= |F2\F1|+ |F1 ∩F2| ≥ 4+4n−9 = 4n−5, which contradicts with that |F2| ≤ 4n−6.

So LT Qn is 3-extra (4n−6)-diagnosable. By the definition of t̃3(LT Qn), t̃3(LT Qn)≥ 4n−6.

The proof is completed. 2

Combining Lemmas 10.2.2 and 10.2.3, we have the following theorem.

Theorem 10.2.4 Let n ≥ 5. Then the 3-extra diagnosability of the locally twisted cubes

LT Qn under the PMC model is 4n−6.

10.3 The 3-Extra Diagnosability of the Locally Twisted Cube

under the MM∗ Model

Before discussing the 3-extra diagnosability of the locally twisted cube LT Qn under the MM∗

model, we firstly give the necessary and sufficient condition of that a system (graph) G is

g-extra t-diagnosable under MM∗ model.

Theorem 10.3.1 [75, 112, 114] A system G = (V,E) is g-extra t-diagnosable under the

MM∗ model if and only if for each distinct pair of g-extra faulty subsets F1 and F2 of V with

|F1| ≤ t and |F2| ≤ t satisfies one of the following conditions.
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(1) There are two vertices u,w ∈V \ (F1 ∪F2) and there is a vertex v ∈ F1 △ F2 such that

uw ∈ E and vw ∈ E.

(2) There are two vertices u,v ∈ F1 \F2 and there is a vertex w ∈V \ (F1 ∪F2) such that

uw ∈ E and vw ∈ E.

(3) There are two vertices u,v ∈ F2 \F1 and there is a vertex w ∈V \ (F1 ∪F2) such that

uw ∈ E and vw ∈ E.

Firstly we give the lower bound of 3-extra diagnosability of the locally twisted cube

LT Qn under the MM∗ model, where n ≥ 4.

Lemma 10.3.2 Let n ≥ 4. Then the 3-extra diagnosability of the locally twisted cube LT Qn

under the MM∗ model is less than or equal to 4n−6, i.e., , t̃3(LT Qn)≤ 4n−6.

Proof: Let A be defined in Lemma 10.1.8, and let F1 = NLT Qn(A), F2 = A∪NLT Qn(A). By

Lemma 10.1.8, |F1|= 4n−9, |F2|= |A|+ |F1|= 4n−5, |V (LT Qn[A])| ≥ 4 and |V (LT Qn −

F2)| ≥ 4, F1 is a 3-extra cut of LT Qn. Therefore, F1 and F2 are 3-extra faulty sets of LT Qn

with |F1|= 4n−9 and |F2|= 4n−5. Since A = F1 △ F2 and NLT Qn(A) = F1 ⊂ F2, there is no

edge of LT Qn between V (LT Qn)\(F1 ∪F2) and F1 △ F2. By Theorem 10.3.1, we can deduce

that LT Qn is not 3-extra (4n−5)-diagnosable under MM∗ model. Hence, by the definition

of 3-extra diagnosability, we conclude that the 3-extra diagnosability of LT Qn is less than

4n−5, i.e., t̃3(LT Qn)≤ 4n−6. 2

A component of a graph G is odd or even according as it has an odd or even number of

vertices. We denote by o(G) the number of odd components of G.

Lemma 10.3.3 [13] A graph G = (V,E) has a perfect matching if and only if o(G−S)≤ |S|

for all S ⊆V .

Secondly we prove the upper bound of the 3-extra diagnosability of the locally twisted

cube LT Qn under the MM∗ model with n ≥ 7.

Lemma 10.3.4 Let n ≥ 7. Then the 3-extra diagnosability of the locally twisted cube LT Qn

under the MM∗ model is more than or equal to 4n−6, i.e., t̃3(LT Qn)≥ 4n−6.
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Proof: By the definition of the 3-extra diagnosability, it is sufficient to show that LT Qn

is 3-extra (4n−6)-diagnosable.

By Theorem 10.3.1, suppose, by way of contradiction, that there are two distinct 3-extra

faulty subsets F1 and F2 of LT Qn with |F1| ≤ 4n−6 and |F2| ≤ 4n−6, but the vertex set pair

(F1,F2) is not satisfied with any one condition in Theorem 10.3.1. Without loss of generality,

assume that F2 \ F1 ̸= /0. Similarly to the discussion on V (LT Qn) = F1 ∪F2 in Lemma

10.2.3, we can deduce V (LT Qn) ̸= F1 ∪F2. Therefore, we have the following discussion for

V (LT Qn) ̸= F1 ∪F2.

Claim 1. LT Qn −F1 −F2 has no isolated vertex.

Suppose, by way of contradiction, that LT Qn −F1 −F2 has at least one isolated vertex w.

Since F1 is a 3-extra faulty set, there are at least one vertex u ∈ F2 \F1 such that u are adjacent

to w. Since the vertex set pair (F1,F2) is not satisfied with any one condition in Theorem

10.3.1, by the condition (3) of Theorem 10.3.1, there is at most one vertex u ∈ F2 \F1 such

that u is adjacent to w. Therefore, there is just a vertex u is adjacent to w.

Case 1 . F1 \F2 = /0.

If F1 \F2 = /0, then F1 ⊆ F2. Since F2 is a 3-extra faulty set, every component Gi of

LT Qn −F1 −F2 has |V (Gi)| ≥ 4. Thus, LT Qn −F1 −F2 has no isolated vertex.

Case 2 . F1 \F2 ̸= /0.

Similarly, since F1 \F2 ̸= /0, by the condition (2) of Theorem 10.3.1 and the hypothesis,

we can deduce that there is just a vertex v ∈ F1 \F2 such that v is adjacent to w.

Let W ⊆V (LT Qn)\(F1∪F2) be the set of isolated vertices in LT Qn[V (LT Qn)\(F1∪F2)],

and H be the induced subgraph by the vertex set V (LT Qn) \ (F1 ∪F2 ∪W ). Then for any

w∈W , there are (n−2) neighbors in F1∩F2. By Lemmas 10.3.3 and 10.1.3, |W | ≤ o(LT Qn−

(F1 ∪F2)) ≤ |F1 ∪F2| = |F1|+ |F2| − |F1 ∩F2| ≤ (4n− 6)+ (4n− 6)− (n− 2) = 7n− 10.

Assume V (H) = /0. Then 2n = |V (LT Qn)| = |F1 ∪ F2|+ |W | = |F1|+ |F2| − |F1 ∩ F2| ≤

(4n− 6) + (4n− 6)− (n− 2) + (7n− 10) = 14n− 20, a contradiction to that n ≥ 7. So

V (H) ̸= /0.

The following we discuss the case when F1 \F2 ̸= /0, F2 \F1 ̸= /0 and V (H) ̸= /0.
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Since the vertex set pair (F1,F2) is not satisfied with the condition (1) of Theorem 10.3.1,

and there are not isolated vertices in H, we induce that there is no edge between V (H)

and F1△F2. Note that F2\F1 ̸= /0. If F1 ∩F2 = /0, then this is a contradiction to that LT Qn

is connected. Therefore, F1 ∩F2 ̸= /0. Thus, F1 ∩F2 is a vertex cut of LT Qn. Since F1

is a 3-extra faulty set of LT Qn, we have that every component Hi of H has |V (Hi)| ≥ 4

and every component Ci of LT Qn[W ∪ (F2\F1)] has |V (Ci)| ≥ 4. Since F2 also is a 3-

extra faulty set of LT Qn, we have that every component C′
i of LT Qn[W ∪ (F1\F2)] has

|V (C′
i)| ≥ 4. Note that LT Qn − (F1 ∩F2) has two parts: H and LT Qn[W ∪ (F1△F2)]. Let

bi ∈V (LT Qn[W ∪ (F1△F2)]). If bi ∈W , then bi has two neighbors u ∈V (Ci) and v ∈V (C′
i).

Then bi ∈V (Ci∪C′
i) and |V (Ci∪C′

i)| ≥ 4. Thus, F1∩F2 is a 3-extra cut of LT Qn. By Theorem

10.1.10, |F1∩F2| ≥ 4n−9. Since |V (Ci)| ≥ 4, |F2\F1| ≥ 3. Since |F1∩F2|= |F2|−|F2\F1)| ≤

(4n− 6)− 3 = 4n− 9, we have |F1 ∩F2| = 4n− 9. Then |F2\F1| = 3 and |F2| = 4n− 6.

Similarly, |F1\F2|= 3, |F1|= 4n−6. By Theorem 10.1.13, the locally twisted cube LT Qn

is tightly (4n− 9) super-3-extra-connected, i.e., LT Qn − (F1 ∩F2) has two components,

one of which is a subgraph of order 4. Noted that |W | ≤ 7n− 10. 2n = |V (LT Qn)| =

|F1\F2|+ |F2\F1|+ |F1 ∩F2|+ |V (H)|+ |W | ≤ 3+3+(4n−9)+4+(7n−10) = 11n−9,

a contradiction to n ≥ 7. Therefore, LT Qn −F1 −F2 has no isolated vertex when F1 \F2 ̸= /0,

F2 \F1 ̸= /0 and V (H) ̸= /0. The proof of Claim 1 is completed.

Let u ∈V (LT Qn)\ (F1 ∪F2). By Claim 1, u has at least one neighbor vertex in LT Qn −

F1 −F2. Since the vertex set pair (F1,F2) is not satisfied with any one condition in Theorem

10.3.1, by the condition (1) of Theorem 10.3.1, for any pair of adjacent vertices u,w ∈

V (LT Qn) \ (F1 ∪F2), there is no vertex v ∈ F1 △ F2 such that uw ∈ E(LT Qn) and uv ∈

E(LT Qn). It follows that u has no neighbor vertex in F1 △ F2. By the arbitrariness of u,

there is no edge between V (LT Qn) \ (F1 ∪F2) and F1 △ F2. Since F2 \F1 ̸= /0 and F1 is a

3-extra faulty set, |F2 \F1| ≥ 4 and |V (LT Qn −F2 −F1)| ≥ 4. Since F1 also is 3-extra faulty

sets, |F1 \F2| ≤ 4 and |V (LT Qn −F1 −F2)| ≥ 4. Then F1 ∩F2 is a 3-extra cut of LT Qn.

By Theorem 10.1.10, we have |F1 ∩F2| ≥ 4n−9. Therefore, |F2| = |F2 \F1|+ |F1 ∩F2| ≥

4+(4n−9) = 4n−5, which contradicts |F2| ≤ 4n−6. Therefore, LT Qn is 3-extra (4n−6)-

diagnosable and t̃3(LT Qn)≥ 4n−6. The proof is completed. 2
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Combining Lemmas 10.3.2 and 10.3.4, we have the following theorem.

Theorem 10.3.5 Let n ≥ 7. Then the 3-extra diagnosability of the locally twisted cube

LT Qn under the MM∗ model is 4n−6.



Chapter 11

Diagnosability of Cayley Graphs

Generated by Transposition Trees under

the MM∗ Model

In this chapter, it is proved that diagnosability of Cay(Tn,Sn) is n−1 under the MM∗ model

for n ≥ 4. The results in this chapter is published in Annals of Applied Mathematics [90].

11.1 Definitions & Notations

Given a system G = (V,E) and the comparison scheme M(V (G),L), for a vertex u ∈V , let

Xu be the set of vertices such that Xu = {v : either uv ∈ E or (u,v)w ∈ L}. That is, a vertex in

Xu is either linked to u or compared with u by some other vertex. Let Yu be the set of edges

among vertices of Xu, such that Yu = {vw : v,w ∈ Xu and (u,v)w ∈ L}. Let Gu = (Xu,Yu).

For a vertex u ∈V , the cardinality of a minimum vertex cover of Gu is called the order of

vertex u.

Denote T (X) to be the set of vertices that are outside of X and are compared to some

vertices of X by some vertices of X (Fig. 11.1). Given G and M(V (G),L), for a subset of

vertices X ⊆V ,

T (X) = {u : (u,v)w ∈ L and v,w ∈ X and u /∈ X .}
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Fig. 11.1 An example of X and T (X)

Here we give the definition of components-composition graphs as follow.

Definition 11.1.1 ([18]) The class of m-dimensional components-composition graphs, de-

noted by CCGm, is defined recursively as follows: 1) CCG1 = {K1}. 2) Let m ≥ 2 be a

positive integer. Given l CCGm−1s G1,G2, . . . ,Gl , where

ν(Gi)≤ ∑
1≤ j≤l, j ̸=i

ν(G j) and 2 ≤ l ≤ ∑
l
i=1 ν(Gi)

2
+1,

a connected graph G constructed from G1,G2, . . . ,Gl by adding a perfect matching PM

in {xy : x ∈ V (Gi) and y ∈ V (G j) for 1 ≤ i, j ≤ l and i ̸= j} is a graph in CCGm. For

convenience, we use the notation PM(G1,G2, . . . ,Gl) to represent such a graph. Note that

V (G) =V (G1)∪V (G2)∪ . . .∪V (Gl) and E(G) = E(G1)∪E(G2)∪ . . .∪E(Gl)∪PM.

11.2 Relationship between m-Dimensional Components -

Composition Graphs & Cayley Graphs Generated by

Transposition Trees

Let Tn be a transposition tree and let i ∈ V (Tn). Adding a new vertex n+ 1 and an edge

i(n+1) to Tn, we obtain a new transposition tree, denoted by Tn+1.
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Theorem 11.2.1 If Cay(Tn,Sn) ∈CCGn, then Cay(Tn+1,Sn+1) ∈CCGn+1.

Proof: We decompose Sn+1 by the last position. Let Hi be defined as above. Then

Hi and Cay(Tn,Sn) are isomorphic, where i = 1,2, . . . ,n + 1. It is easy to see that all

cross-edges are a perfect matching PM of Cay(Xn+1,Sn+1). Therefore, Cay(Xn+1,Sn+1) =

PM(H1,H2, . . . ,Hn+1) ∈CCGn+1. 2

Let Tn(≥ 3) be a transposition tree and let v be a vertex of degree one in Tn. Then Tn−{v}

is still a transposition tree. Repeating above procedures, we can obtain a transposition tree

T3. Note that Cay(T3,S3) ∈CCG3. By Theorem 11.2.1, we have the following theorem.

Theorem 11.2.2 Cay(Tn,Sn) ∈CCGn.

11.3 Diagnosability of Cayley Graphs Generated by Trans-

position Trees under the MM∗ Model

In this section, we will give the diagnosability of Cayley graphs generated by transposition

trees under the MM∗ model.

The following two theorems show the structure of G.

Theorem 11.3.1 [52] Let t ≥ 3 be a positive integer and let G1,G2, . . . ,Gl be l components

of a CCG, G = PM(G1,G2, . . . ,Gl). Then, G is (t +1)-diagnosable under the MM∗ model

if, for each i ∈ {1,2, . . . , l}, the following three conditions hold: (1) orderGi(v)≥ t for each

vertex v ∈V (Gi); (2) ν(V (Gi))≥ 2t ; and (3) κ(Gi)≥ t.

Theorem 11.3.2 [56] (P. Hall’s theorem) Let G = (U ;W ) be a bipartite graph. Then G has

a matching covering U if and only if |N(X)| ≥ |X | for all X ⊆U .

Proposition 11.3.1 Let n ≥ 3 be a positive integer. Then a vertex of Cay(Tn,Sn) has order

n−1, where for a vertex u ∈V , the cardinality of a minimum vertex cover of Gu is called the

order of vertex u..
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Proof: By Lemma 2.4.5, without loss of generality, it is sufficient to check the order for a

vertex u = (1). By the definition of Cay(Tn,Sn)u = (Xu,Yu), Xu consists of those vertices that

are either linked to u, denoted by X1, or being compared to u, denoted by X2. So, Xu is the

union of two sets X1 and X2. The total number of vertices in X1 is n−1, and the total number

of vertices in X2 is at most (n−1)(n−2). Yu consists of all edges vw such that w compares u

and v, i.e., w is linked to u and v is linked to w. That is, Yu = {vw : w ∈ X1,v ∈ X2}. It can be

seen that Cay(Tn,Sn)u is a bipartite graph. To find the order of u, we need to find the size of

the minimum vertex cover. From the Konig-Egervary theorem, in a bipartite graph, the size

of the minimum vertex cover is equal to the size of the maximum matching. A matching is

a set of edges of the graph such that no two edges in the set share a common vertex. The

matching is maximum if it has the maximum number of edges over all matchings in the

graph.

Claim. Let v,w ∈ X1 with v ̸= w. Then |N(v)∩N(w)| ≤ 2.

In this case, u = (1) ∈ N(v)∩N(w). Suppose, on the contrary, that |N(v)∩N(w)| ≥ 3.

Let a,b ∈ N(v)∩N(w) with a ̸= u and b ̸= u. Then uvawu and uvbwu are a cycle of length

4. Since u = (1), v and w are two transpositions. Let v = (i j) and w = (rt). Since uvawu is a

cycle of length 4, a = (i j)(rt), and (i j) and (rt) are disjoint. Thus, b = (i j)(rt). This is a

contradiction to a ̸= b. The proof of this claim is completed.

Since n ≥ 3, we have |X1| ≥ 2. Let x1,y1 ∈ X1. By the Claim, we have |X2| ≥

|N({x1,y1})| ≥ 2(n− 2)− 1 ≥ n− 1 = |X1|. Let X ⊆ X1. For 2 ≤ |X | ≤ n− 1, |N(X)| ≥

|N({x1,y1})| ≥ 2(n− 2)− 1 ≥ n− 1 ≥ |X |. When |X | = 1, we have |N(X)| ≥ |X |. Thus,

by Theorem 11.3.2, Cay(Tn,Sn)u has a maximum matching covering X1 and the size of the

maximum matching for Cay(Tn,Sn)u is (n−1), which is also the order of u. The proof is

completed. 2

Now we are ready to show the main results.

Theorem 11.3.3 Cayley graphs Cay(Tn,Sn) generated by transposition trees Tn is (n−1)-

diagnosable under the MM∗ model for n ≥ 4.
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Proof: By Theorem 11.2.2, Cay(Tn,Sn) = PM(Cay(Tn−1,Sn−1), . . . ,Cay(Tn−1,Sn−1)︸ ︷︷ ︸
n

).

By Proposition 11.3.1, orderCay(Tn−1,Sn−1)(v)≥ n−2 for each vertex v ∈ Sn−1 where n ≥ 4.

By the definition of Cay(Tn−1,Sn−1), |Sn−1|= (n−1)! ≥ 2n−2 for n ≥ 4. By Lemma 2.4.4,

κ(Cay(Tn,Sn)) = n− 2. Thus, by Theorem 11.3.1 Cay(Tn,Sn) is (n− 2) + 1 = (n− 1)-

diagnosable for n ≥ 4. 2

There are several different ways to characterize a t-diagnosable system under the compar-

ison approach [75]. In this study, we use one particular characterization given in [75] which

gives the three sufficient conditions for a system to be t-diagnosable.

Finally, we point out that Cay(T4,S4) is the least Cay(Tn,Sn) satisfying the three sufficient

conditions in Theorem 11.3.1. Because Cay(T3,S3) is isomorphic to the star graph, by [116]

Cay(T3,S3) is not 2-diagnosable.

Theorem 11.3.4 [51] Let G = (V,E) be a graph representation of a system, where V repre-

sents the processors and E represents their interconnections. Then, d(G)≤ δ (G) under the

MM∗ model.

Theorem 11.3.5 Diagnosability of Cay(Tn,Sn) is n−1 under the MM∗ model for n ≥ 4.

Proof: By Theorem 11.3.3, d(Cay(Tn,Sn)) ≥ n− 1 for n ≥ 4. Because Cay(Tn,Sn)

(n ≥ 1) is regular with the common degree n− 1, δ (Cay(Tn,Sn)) = n− 1. By Theorem

11.3.4, d(Cay(Tn,Sn)) ≤ δ (Cay(Tn,Sn)) = n− 1. Therefore, d(Cay(Tn,Sn)) = n− 1 for

n ≥ 4. 2

11.4 Conclusion

The diagnosability of Cayley graph network Cay(Tn,Sn) generated by transposition trees

under the MM∗ model was studied here. Under this model, the system is self-diagnosable

if we know the diagnosability of the system. We proved that a system with the Cay(Tn,Sn)

structure is (n− 1)-diagnosable under the MM∗ model if n ≥ 4. Based on the result, a

polynomial-time algorithm proposed in [75] can be directly used to diagnose the system if

there are at most (n−1) faulty processors. The diagnosis involves only one test phase to
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identify the faulty processors and one repair or replacement phase. Thus it is applicable in the

environment that the components are reliable and periodic and quick testings are affordable.

Furthermore, the algorithm can be used as a component of a larger diagnosis scheme to

perform a given phase of fault location, as opposed to being used as a stand-alone diagnosis

tool.



Chapter 12

The g-Good-Neighbor & g-Extra

Diagnosability of Networks

In this chapter, we show the relationship between the g-good-neighbor (extra) diagnosability

and g-good-neighbor (extra) connectivity of graphs. The results in this chapter was accepted

by Theoretical Computer Science [94].

12.1 The Relationship between the g-Extra Diagnosability

& the g-Extra Connectivity under the PMC Model &

MM∗ Model

Firstly we give two existing propositions on the relationship between the g-good-neighbor

connectivity and g-extra connectivity.

Proposition 12.1.1 [71] Let G be a g-extra and g-good-neighbor connected graph. Then

κ̃(g)(G)≤ κ(g)(G).

Proposition 12.1.2 [71] Let G be a nature connected graph. Then κ∗(G) = κ̃(1)(G).

Before discussing the g-extra diagnosability of networks under the PMC model and

MM∗ model, see the Theorem 5.2.1, 5.3.1, 10.2.1 and 10.3.1, which show the necessary and
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sufficient conditions of that a system (graph) G is g-extra (g-good-neighbor) t-diagnosable

under the PMC and MM∗ model.

Theorem 12.1.1 Let G = (V (G),E(G)) be a g-extra connected graph. If there is connected

subgraph H of G with |V (G)|= g+1 such that N(V (H)) is a minimum g-extra cut of G, then

the g-extra diagnosability of G is less than or equal to κ̃(g)(G)+g, i.e., t̃g(G)≤ κ̃(g)(G)+g

under the PMC model and MM∗ model.

Proof: Since N(V (H)) is a minimum g-extra cut of G, |N(V (H))|= κ̃(g)(G) holds. Let

F1 = N(V (H)), and let F2 = F1 ∪V (H). Then |F2| = κ̃(g)(G)+ g+ 1. Therefore, F1 and

F2 are both g-extra faulty sets of G with |F1| = κ̃(g)(G) and |F2| = κ̃(g)(G)+g+1. Since

V (H) = F1 △ F2 and F1 ⊂ F2, there is no edge of G between V (G)\(F1 ∪F2) and F1 △ F2.

By Theorems 10.2.1 and 10.3.1, we can deduce that G is not g-extra (κ̃(g)(G)+ g+ 1)-

diagnosable under the PMC model and MM∗ model. Hence, by the definition of g-extra

diagnosability, we conclude that the g-extra diagnosability of G is less than to κ̃(g)(G)+g+1,

i.e., t̃g(G)≤ κ̃(g)(G)+g. 2

Theorem 12.1.2 Let G = (V (G),E(G)) be a g-extra connected graph, and let V (G) ̸=

F1 ∪F2 for each distinct pair of g-extra faulty subsets F1 and F2 of G with |F1| ≤ κ̃(g)(G)+g

and |F2| ≤ κ̃(g)(G) + g. Then the g-extra diagnosability of G is more than or equal to

κ̃(g)(G)+g, i.e., tg(G)≥ κ̃(g)(G)+g under the PMC model.

Proof: By the definition of g-extra diagnosability, it is sufficient to show that G is g-extra

(κ̃(g)(G)+g)-diagnosable. By Theorem 10.2.1, suppose, on the contrary, that there are two

distinct g-extra faulty subsets F1 and F2 of G with |F1| ≤ κ̃(g)(G)+g and |F2| ≤ κ̃(g)(G)+g,

but the vertex set pair (F1,F2) does not satisfy the condition in Theorem 10.2.1, i.e., there

are no edges between V (G)\(F1 ∪F2) and F1 △ F2. Without loss of generality, assume that

F2 \F1 ̸= /0.

Since there are no edges between V (G) \ (F1 ∪F2) and F1 △ F2, and F1 is a g-extra

faulty set, G−F1 has two parts G−F1 −F2 and G[F2 \F1] (for convenience). Thus, every

component Gi of G−F1 −F2 has |V (Gi)| ≥ g+1 and every component B′
i of G[F2 \F1]) has

|V (B′
i)| ≥ g+ 1. Similarly, every component B

′′
i of G[F1 \F2]) has |V (B

′′
)| ≥ g+ 1 when
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F1 \F2 ̸= /0. Therefore, F1 ∩F2 is also a g-extra faulty set of G. Note that F1 ∩F2 = F1 is

also a g-extra faulty set when F1 \F2 = /0. Since there are no edges between V (G−F1 −F2)

and F1 △ F2, F1 ∩F2 is a g-extra cut of G. If F1 ∩F2 = /0, this is a contradiction to that G is

connected. Therefore, F1 ∩F2 ̸= /0. Therefore, |F2|= |F2\F1|+ |F1 ∩F2| ≥ g+1+ κ̃(g)(G),

which contradicts with that |F2| ≤ κ̃(g)(G)+g. So G is g-extra (κ̃(g)(G)+g)-diagnosable.

By the definition of t̃g(G), t̃g(G)≥ κ̃(g)(G)+g. 2

By Theorems 12.1.1 and 12.1.2, we have the following theorem.

Theorem 12.1.3 Let G = (V (G),E(G)) be a g-extra connected graph, and let V (G) ̸=

F1 ∪F2 for each distinct pair of g-extra faulty subsets F1 and F2 of G with |F1| ≤ κ̃(g)(G)+g

and |F2| ≤ κ̃(g)(G)+g. If there is connected subgraph H of G with |V (H)|= g+1 such that

N(V (H)) is a minimum g-extra cut of G, then the g-extra diagnosability of G is κ̃(g)(G)+g

under the PMC model.

The following results have been obtained in [96].

Lemma 12.1.4 [96] Let BSn be the bubble-sort star graph and A = {(1),(12),(123)}. If

n ≥ 5, F1 = N(A), F2 = A∪N(A), then |F1|= 6n−15, |F2|= 6n−12, F1 is a 2-extra cut of

BSn, and BSn −F1 has two components BSn −F2 and BSn[A].

Theorem 12.1.5 [96] For n ≥ 5, the 2-extra connectivity of the bubble-sort star graph BSn

is 6n−15.

By Lemma 12.1.4, there is connected subgraph BSn[A] of order 3 such that N(A) is

a minimum 2-extra cut of BSn. By Theorem 12.1.5, κ̃(2)(BSn) = 6n− 15. Since n! >

[(6n− 15)+ 2]+ [(6n− 15)+ 2] when n ≥ 5, we have V (BSn) ̸= F1 ∪F2 for each distinct

pair of 2-extra faulty subsets F1 and F2 of BSn with |F1| ≤ 6n−15+2 and |F2| ≤ 6n−15+2.

By Theorem 12.1.3, we have the following corollary.

Corollary 12.1.6 [96] For n ≥ 5, the 2-extra diagnosability of the bubble-sort star graph

BSn is 6n−13 under the PMC model.
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Let G = (V (G),E(G)) be a g-extra connected graph. Let W ⊆V (G)\ (F1∪F2) be the set

of isolated vertices in G[V (G)\ (F1 ∪F2)], and let H be the induced subgraph by the vertex

set V (G)\ (F1 ∪F2 ∪W ) for each distinct pair of g-extra faulty subsets F1 and F2 of G with

|F1| ≤ κ̃(g)(G)+g−1 and |F2| ≤ κ̃(g)(G)+g−1.

Theorem 12.1.7 Let G be a g-extra connected graph, and let V (H) ̸= /0 for each distinct pair

of g-extra faulty subsets F1 and F2 of G with |F1| ≤ κ̃(g)(G)+g−1 and |F2| ≤ κ̃(g)(G)+g−1.

Then the g-extra diagnosability of G is more than or equal to κ̃(g)(G)+g−1, i.e., tg(G)≥

κ̃(g)(G)+g−1 under the MM∗ model.

Proof: By the definition of g-extra diagnosability, it is sufficient to show that G is g-extra

(κ̃(g)(G)+g−1)-diagnosable.

Suppose, on the contrary, that there are two distinct g-extra faulty subsets F1 and F2 of

G with |F1| ≤ κ̃(g)(G)+ g− 1 and |F2| ≤ κ̃(g)(G)+ g− 1, but the vertex set pair (F1,F2)

does not satisfy any condition in Theorem 10.3.1. Without loss of generality, suppose that

F2 \F1 ̸= /0. Let W ⊆V (G)\ (F1 ∪F2) be the set of isolated vertices in G[V (G)\ (F1 ∪F2)],

and let H be the induced subgraph by the vertex set V (G)\ (F1 ∪F2 ∪W ). Then V (H) ̸= /0.

We consider the following cases.

Case 1. g = 0.

Note that V (H) ̸= /0 for each distinct pair of 0-good-neighbor faulty subsets F1 and F2

of G with |F1| ≤ κ̃(0)(G)− 1 and |F2| ≤ κ̃(0)(G)− 1 and F2 \F1 ̸= /0. Since the vertex set

pair (F1,F2) does not satisfy the condition (1) of Theorem 10.3.1, and any vertex of V (H)

is not isolated in H, we deduce that there is no edge between V (H) and F1 △ F2. Therefore,

F1∩F2 is a 0-good-neighbor cut of G. Thus, |F2|= |F2 \F1|+ |F1∩F2| ≥ 1+ κ̃(0)(G), which

contradicts |F2| ≤ κ̃(0)(G)−1.

Case 2. g ≥ 1.

Claim 1. G−F1 −F2 has no isolated vertex.

Suppose, on the contrary, that G−F1 −F2 has at least one isolated vertex w1. Since F1

is a g-extra faulty set, there is a vertex u ∈ F2 \F1 such that u is adjacent to w1. Meanwhile,

since the vertex set pair (F1,F2) does not satisfy any condition in Theorem 10.3.1, by the
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condition (3) of Theorem 10.3.1, there is at most one vertex u ∈ F2 \F1 such that u is adjacent

to w1. Thus, there is just a vertex u ∈ F2 \F1 such that u is adjacent to w1. If F1 \F2 = /0,

then F1 ⊆ F2. Since F2 is a g-extra faulty set, every component Gi of G−F1 −F2 = G−F2

satisfies |V (Gi)| ≥ g+ 1. Therefore, G−F1 −F2 has no isolated vertex for g ≥ 1. Thus,

F1 \F2 ̸= /0. Similarly, we know that there is just a vertex a ∈ F1 \F2 such that a is adjacent

to w1. Let W ⊆V (G)\ (F1 ∪F2) be the set of isolated vertices in G[V (G)\ (F1 ∪F2)], and

let H be the induced subgraph by the vertex set V (G)\ (F1 ∪F2 ∪W ). Then V (H) ̸= /0.

Since the vertex set pair (F1,F2) does not satisfy the condition (1) of Theorem 10.3.1,

and none of the vertices in V(H) is isolated vertex in H, we know that there is no edge

between V (H) and F1 △ F2. Note F2\F1 ̸= /0. If F1 ∩F2 = /0, then this is a contradiction to

that G is connected. Therefore, F1 ∩F2 ̸= /0. Thus, F1 ∩F2 is a vertex cut of G. Since F1 is

a g-extra faulty set of G, we have that every component Hi of H satisfies |V (Hi)| ≥ g+ 1

and every component Bi of G[W ∪ (F2 \F1)]) satisfies |V (Bi)| ≥ g+1. Since F2 is a g-extra

faulty set of G, we have that every component B′
i of G[W ∪ (F1 \F2)]) has |V (B′

i)| ≥ g+1.

Note that G− (F1 ∩F2) has two parts (for convenience): H and G[W ∪ (F1 \F2)∪ (F2 \F1)]).

Let Bi be a component of G[W ∪ (F1 \F2)∪ (F2 \F1)]) and let bi ∈V (Bi). If bi ∈W , then

there is a component Gi of G([F2 \F1]) (|V (Gi)| ≥ g+1) and a component Bi of G([F1 \F2])

(|V (Bi)| ≥ g+1) such that bi ∈V (Gi) and bi ∈V (Bi). It follows that Gi ∪Bi is connected in

G[W ∪(F1\F2)∪(F2\F1)]) and bi ∈V (Gi∪Bi). Since a connection is an equivalence relation

on the vertex set W ∪ (F1 \F2)∪ (F2 \F1), Bi = (Gi ∪Bi) holds. Therefore, |V (Bi)| ≥ g+1.

If bi ∈ (F2 \F1), then there is a component Gi of G([F2 \F1]) (|V (Gi)| ≥ g+ 1) such that

bi ∈ V (Gi). It follows that Gi is connected in G[W ∪ (F1 \F2)∪ (F2 \F1)]) and bi ∈ V (Gi).

Since a connection is an equivalence relation on the vertex set W ∪ (F1 \F2)∪ (F2 \F1), we

have that Gi is a subgraph of Bi. Therefore, |V (Bi)| ≥ g+ 1. Similarly, if bi ∈ (F1 \F2),

then |V (Bi)| ≥ g+1. Therefore, F1 ∩F2 is a g-extra cut of G.

Since every component Bi of G[W ∪ (F2 \F1)]) has |V (Bi)| ≥ g+1, we have |F2 \F1| ≥ g

and we have that κ̃(g)(G)+g−1 ≥ |F2|= |F1∩F2|+ |F2 \F1| ≥ κ̃(g)(G)+g, a contradiction.

The proof of Claim 1 is completed.
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Let u ∈V (G)\ (F1 ∪F2). By Claim 1, u has at least one neighbor vertex in G−F1 −F2.

Since the vertex set pair (F1,F2) does not satisfy any one condition in Theorem 10.3.1, by

the condition (1) of Theorem 10.3.1, for any pair of adjacent vertices u,w ∈V (G)\ (F1 ∪F2),

there is no vertex v ∈ F1 △ F2 such that uw ∈ E(G) and vw ∈ E(G). It follows that u

has no neighbor in F1 △ F2. Since u is taken arbitrarily, so there is no edge between

V (G)\ (F1 ∪F2) and F1 △ F2. If F1 ∩F2 = /0, then this is a contradiction to the assumption

that G is connected. Therefore, F1∩F2 ̸= /0 and F1∩F2 is a cut of G. Since F2 \F1 ̸= /0 and F1

is a g-extra faulty set, we have that every component Hi of G−F1 −F2 has |V (Hi)| ≥ g+1

and every component Gi of G([F2 \F1]) has |V (Gi)| ≥ g+ 1. Suppose that F1 \F2 = /0.

Then F1 ∩F2 = F1. Since F1 is a g-extra faulty set of G, we have that F1 ∩F2 = F1 is a

g-extra faulty set of G. Since there is no edge between V (G) \ (F1 ∪F2) and F2 \F1, we

have that F1 ∩F2 = F1 is a g-extra cut of G. Suppose that F1 \F2 ̸= /0. Similarly, every

component Bi of G([F1 \F2]) has |V (Bi)| ≥ g+1. Note that G− (F1∩F2) has three parts (for

convenience): H, G[F1\F2] and G[F2\F1]. Therefore, F1∩F2 is a g-extra cut of G. Therefore,

|F2| = |F2 \ F1|+ |F1 ∩ F2| ≥ g + 1 + κ̃(g)(G), which contradicts |F2| ≤ κ̃(g)(G) + g − 1.

Therefore, G is g-extra (κ̃(g)(G)+ g− 1)-diagnosable and t̃g(G) ≥ κ̃(g)(G)+ g− 1. The

proof is completed. 2

By Theorems 12.1.1 and 12.1.7, we have the following theorem.

Theorem 12.1.8 Let G be a g-extra connected graph, and let V (H) ̸= /0 for each distinct pair

of g-extra faulty subsets F1 and F2 of G with |F1| ≤ κ̃(g)(G)+g and |F2| ≤ κ̃(g)(G)+g. If

there is connected subgraph H of G with |V (H)|= g+1 such that N(V (H)) is a minimum

g-extra cut of G, then the g-extra diagnosability of G is κ̃(g)(G)+g−1 or κ̃(g)(G)+g under

the MM∗ model.
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12.2 The Relationship between the g-Good-Neighbor Di-

agnosability & the g-Good-Neighbor Connectivity un-

der the PMC Model & MM∗ Model

In this section, we will show the relationship between the g-good-neighbor diagnosability

and g-good-neighbor connectivity of networks under the PMC and MM∗ model.

Theorem 12.2.1 Let G= (V (G),E(G)) be a g-good-neighbor connected graph, and let H be

connected subgraph of G with δ (H) = g such that it contains V (G) as least as possible, and

N(V (H)) is a minimum g-good-neighbor cut of G. Then the g-good-neighbor diagnosability

of G is less than or equal to κ(g)(G)+ |V (H)|−1, i.e., tg(G)≤ κ(g)(G)+ |V (H)|−1 under

the PMC model and MM∗ model.

Proof: Since N(V (H)) is a minimum g-good-neighbor cut of G, |N(V (H))|= κ(g)(G)

holds. Let F1 = N(V (H)), and let F2 = F1 ∪V (H). Then |F2| = κ(g)(G)+ |V (H)|. There-

fore, F1 and F2 are both g-good-neighbor faulty sets of G with |F1| = κ(g)(G) and |F2| =

κ(g)(G) + |V (H)|. Since V (H) = F1 △ F2 and F1 ⊂ F2, there is no edge of G between

V (G)\(F1 ∪F2) and F1 △ F2. By Theorems 10.2.1 and 10.3.1, we know that G is not g-good-

neighbor (κ(g)(G)+ |V (H)|)-diagnosable under the PMC model and MM∗ model. Hence,

by the definition of g-good-neighbor diagnosability, we conclude that the g-good-neighbor

diagnosability of G is less than to κ(g)(G)+ |V (H)|, i.e., tg(G)≤ κ(g)(G)+ |V (H)|−1. 2

Theorem 12.2.2 Let G = (V (G),E(G)) be a g-good-neighbor connected graph, and let

H ′ be connected subgraph of G with δ (H ′) = g such that it contains V (G) as least as

possible, and V (G) ̸= F1 ∪F2 for each distinct pair of g-good-neighbor faulty subsets F1

and F2 of G with |F1| ≤ κ(g)(G)+ |V (H ′)|−1 and |F2| ≤ κ(g)(G)+ |V (H ′)|−1. Then the

g-good-neighbor diagnosability of G is more than or equal to κ(g)(G)+ |V (H ′)|− 1, i.e.,

tg(G)≥ κ(g)(G)+ |V (H ′)|−1 under the PMC model.

Proof: By the definition of g-good-neighbor diagnosability, it is sufficient to show that

G is g-good-neighbor (κ(g)(G)+ |V (H ′)| − 1)-diagnosable. By Theorem 5.2.1, suppose,



12.2 The Relationship between the g-Good-Neighbor Diagnosability & the
g-Good-Neighbor Connectivity under the PMC Model & MM∗ Model 165

on the contrary, that there are two distinct g-good-neighbor faulty subsets F1 and F2 of G

with |F1| ≤ κ(g)(G)+ |V (H ′)|−1 and |F2| ≤ κ(g)(G)+ |V (H ′)|−1, but the vertex set pair

(F1,F2) does not satisfy the condition in Theorem 5.2.1, i.e., there are no edges between

V (G)\(F1 ∪F2) and F1 △ F2. Without loss of generality, assume that F2 \F1 ̸= /0.

Since there are no edges between V (G) \ (F1 ∪F2) and F1 △ F2, and F1 is a g-good-

neighbor faulty set, G−F1 has two parts G−F1 −F2 and G[F2 \F1] (for convenience).

Thus, |N(v)∩ (V \ (F1 ∪F2))| ≥ g for every vertex v in V \ (F1 ∪F2). By the definition of

H ′, |V (G−F1 −F2)| ≥ |V (H ′)| holds. Similarly, |N(v)∩ (F2 \F1)| ≥ g for every vertex

v in F2 \F1 and |N(v)∩ (F1 \F2)| ≥ g for every vertex v in F1 \F2 when F1 \F2 ̸= /0, and

|F2 \F1| ≥ |V (H ′)| and |F1 \F2| ≥ |V (H ′)| when F1 \F2 ̸= /0. Therefore, F1 ∩F2 is also a

g-good-neighbor faulty set of G. Note that F1 ∩F2 = F1 is also a g-extra faulty set when

F1\F2 = /0. Since there are no edges between V (G−F1−F2) and F1 △ F2, F1∩F2 is a g-good-

neighbor cut of G. If F1 ∩F2 = /0, this is a contradiction to that G is connected. Therefore,

F1 ∩F2 ̸= /0 and hence |F2| = |F2\F1|+ |F1 ∩F2| ≥ |V (H ′)|+ κ(g)(G), which contradicts

|F2| ≤ κ(g)(G)+ |V (H ′)|−1. So G is g-good-neighbor (κ(g)(G)+ |V (H ′)|−1)-diagnosable.

By the definition of tg(G), tg(G)≥ κ(g)(G)+ |V (H ′)|−1. 2

By Theorems 12.2.1 and 12.2.2, we have the following theorem.

Theorem 12.2.3 Let G = (V (G),E(G)) be a g-good-neighbor connected graph, and let H

be connected subgraph of G δ (G) = g such that it contains V (G) as least as possible and

N(V (H)) is a minimum g-good-neighbor cut of G, and let H ′ be connected subgraph of G

with δ (G) = g such that it contains V (G) as least as possible. If V (G) ̸= F1 ∪F2 for each dis-

tinct pair of g-good-neighbor faulty subsets F1 and F2 of G with |F1| ≤ κ(g)(G)+ |V (H ′)|−1

and |F2| ≤ κ(g)(G)+ |V (H ′)|−1, then κ(g)(G)+ |V (H ′)|−1≤ tg(G)≤ κ(g)(G)+ |V (H)|−1

under the PMC model.

The following two results have been obtained in [97].

Lemma 12.2.4 [97] Let BSn be the bubble-sort star graph and A = {(1),(12),(123),(13)}.

If n ≥ 5, F1 = N(A), F2 = A∪N(A), then |F1| = 8n−22, |F2| = 8n−18, δ (BSn −F1) ≥ 2,

and δ (BSn −F2)≥ 2.
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Theorem 12.2.5 [97] For n ≥ 5, the 2-good-neighbor connectivity of the bubble-sort star

graph BSn is 8n−22.

By Lemma 12.2.4, there is connected subgraph BSn[A] of minimum degree 2 such that it

contains V (BSn) as least as possible and N(A) is a minimum 2-good-neighbor cut of BSn By

Theorem 12.2.5, κ(2)(BSn) = 8n−22. Since n! > [(8n−22)+4−1]+ [(8n−22)+4−1]

when n ≥ 5, we have V (BSn) ̸= F1 ∪F2 for each distinct pair of 2-good-neighbor faulty

subsets F1 and F2 of BSn with |F1| ≤ (8n− 22)+ 4− 1 and |F2| ≤ (8n− 22)+ 4− 1. By

Theorem 12.2.3, we have the following corollary.

Corollary 12.2.6 [97] For n ≥ 5, the 2-good-neighbor diagnosability of the bubble-sort star

graph BSn is 8n−19 under the PMC model.

Let G = (V (G),E(G)) be a g-good-neighbor connected graph. Suppose that H ′ is

connected subgraph of G with δ (H ′) = g such that it contains V (G) as least as possible.

Let W ⊆ V (G) \ (F1 ∪F2) be the set of isolated vertices in G[V (G) \ (F1 ∪F2)], and let

H∗ be the induced subgraph by the vertex set V (G) \ (F1 ∪F2 ∪W ) for each distinct pair

of g-good-neighbor faulty subsets F1 and F2 of G with |F1| ≤ κ(g)(G)+ |V (H ′)| − 2 and

|F2| ≤ κ(g)(G)+ |V (H ′)|−2.

Theorem 12.2.7 Let G be a g-good-neighbor connected graph, and let V (H∗) ̸= /0 for each

distinct pair of g-good-neighbor faulty subsets F1 and F2 of G with |F1| ≤ κ(g)(G)+ |V (H ′)|−

2 and |F2| ≤ κ(g)(G)+ |V (H ′)|−2. Then the g-good-neighbor diagnosability of G is more

than or equal to κ(g)(G)+ |V (H ′)|−2, i.e., tg(G)≥ κ(g)(G)+ |V (H ′)|−2 under the MM∗

model.

Proof: By the definition of g-good-neighbor diagnosability, it is sufficient to show that G

is g-good-neighbor (κ(g)(G)+ |V (H ′)|−2)-diagnosable.

Suppose, on the contrary, that there are two distinct g-good-neighbor faulty subsets F1

and F2 of G with |F1| ≤ κ(g)(G)+ |V (H ′)| − 2 and |F2| ≤ κ(g)(G)+ |V (H ′)| − 2, but the

vertex set pair (F1,F2) does not satisfy any condition in Theorem 5.3.1. Without loss of

generality, suppose that F2\F1 ̸= /0. Let W ⊆V (G)\(F1∪F2) be the set of isolated vertices in
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G[V (G)\(F1∪F2)], and let H∗ be the induced subgraph by the vertex set V (G)\(F1∪F2∪W ).

Then V (H∗) ̸= /0. We consider the following cases.

Case 1. g = 0.

By the definition of H ′, |V (H ′)| = 1. Note that V (H∗) ̸= /0 for each distinct pair of 0-

good-neighbor faulty subsets F1 and F2 of G with |F1| ≤ κ(0)(G)+ |V (H ′)|−2 = κ(0)(G)−1

and |F2| ≤ κ(0)(G)+ |V (H ′)|− 2 = κ(0)(G)− 1 and F2 \F1 ̸= /0. Since the vertex set pair

(F1,F2) does not satisfy the condition (1) of Theorem 5.3.1, and any vertex of V (H∗) is not

isolated in H∗, we deduce that there is no edge between V (H∗) and F1 △ F2. Therefore,

F1∩F2 is a 0-good-neighbor cut of G. Thus, |F2|= |F2 \F1|+ |F1∩F2| ≥ 1+κ(0)(G), which

contradicts |F2| ≤ κ(0)(G)−1.

Case 2. g ≥ 1.

Claim 1. G−F1 −F2 has no isolated vertex.

Suppose, on the contrary, that G−F1 −F2 has at least one isolated vertex w1. Since F1

is one g-good-neighbor faulty set, there is a vertex u ∈ F2 \F1 such that u is adjacent to w1.

Meanwhile, since the vertex set pair (F1,F2) does not satisfy any one condition in Theorem

5.3.1, by the condition (3) of Theorem 5.3.1, there is at most one vertex u ∈ F2 \F1 such

that u is adjacent to w1. Thus, there is just a vertex u ∈ F2 \F1 such that u is adjacent to

w1. So d(w1) = 1 in G[{w1}∪ (F2 \F1)]. Since F1 is a g-good-neighbor faulty set, this is a

contradiction when g ≥ 2. Then F1 is a nature faulty set. If F1 \F2 = /0, then F1 ⊆ F2. Since

F2 is a g-good-neighbor faulty set, every vertex v of G−F1 −F2 = G−F2 has d(v)≥ g in

G−F2. Therefore, G−F1 −F2 has no isolated vertex for g ≥ 1. Thus, F1 \F2 ̸= /0. Similarly,

we know that there is just a vertex a ∈ F1 \F2 such that a is adjacent to w1 and F2 is a nature

faulty set. Let W ⊆ V (G) \ (F1 ∪F2) be the set of isolated vertices in G[V (G) \ (F1 ∪F2)],

and let H∗ be the induced subgraph by the vertex set V (G)\ (F1 ∪F2 ∪W ). Then V (H∗) ̸= /0.

Since the vertex set pair (F1,F2) does not satisfy the condition (1) of Theorem 5.3.1,

and any vertex of V (H∗) is not isolated in H∗, we know that there is no edge between

V (H∗) and F1 △ F2. Note F2\F1 ̸= /0. If F1 ∩F2 = /0, then this is a contradiction to that G is

connected. Therefore, F1 ∩F2 ̸= /0. Thus, F1 ∩F2 is a vertex cut of G. Since F1 is a nature

faulty set of G, we have that every vertex v of H∗ has dH∗(v) ≥ 1 and every vertex a of
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G[W ∪ (F2 \F1)]) has d(a)≥ 1 in G[W ∪ (F2 \F1)]). Since F2 is a nature faulty set of G, we

have that every vertex b of G[W ∪ (F1 \F2)]) has d(b)≥ 1 in G[W ∪ (F1 \F2)]). Therefore,

every vertex x of G[W ∪ (F1 \F2)∪ (F2 \F1)]) has d(x)≥ 1 in G[W ∪ (F1 \F2)∪ (F2 \F1)]).

Note that G− (F1∩F2) has two parts (for convenience): H∗ and G[W ∪ (F1 \F2)∪ (F2 \F1)]).

Therefore, F1 ∩F2 is a nature cut of G and hence we have that κ∗(G) + 2− 2 ≥ |F2| =

|F1 ∩F2|+ |F2 \F1| ≥ κ∗(G)+1, a contradiction. The proof of Claim 1 is completed.

Let u ∈V (G)\ (F1 ∪F2). By Claim 1, u has at least one neighbor vertex in G−F1 −F2.

Since the vertex set pair (F1,F2) does not satisfy any condition in Theorem 5.3.1, by the

condition (1) of Theorem 5.3.1, for any pair of adjacent vertices u,w ∈ V (G) \ (F1 ∪F2),

there is no vertex v ∈ F1 △ F2 such that uw ∈ E(G) and vw ∈ E(G). It follows that u has no

neighbor in F1 △ F2. Since u is taken arbitrarily, so there is no edge between V (G)\ (F1∪F2)

and F1 △ F2. If F1 ∩F2 = /0, then this is a contradiction to that G is connected. Therefore,

F1∩F2 ̸= /0 and F1∩F2 is a cut of G. Since F2 \F1 ̸= /0 and F1 is a g-good-neighbor faulty set,

we have that every vertex v of G−F1−F2 has d(v)≥ g ≥ 1 in G−F1−F2 and every vertex a

of G([F2 \F1]) has d(a)≥ g ≥ 1 in G([F2 \F1]). By the definition of H ′, |F2 \F1| ≥ |V (H ′)|.

Suppose that F1 \F2 = /0. Then F1 ∩F2 = F1. Since F1 is a g-good-neighbor faulty set of

G, we have that F1 ∩F2 = F1 is a g-good-neighbor faulty set of G. Since there is no edge

between V (G) \ (F1 ∪F2) and F2 \F1, we have that F1 ∩F2 = F1 is a g-good-neighbor cut

of G. Suppose that F1 \F2 ̸= /0. Similarly, every vertex b of G([F1 \F2]) has d(b) ≥ g.

Note that G− (F1 ∩F2) has three parts (for convenience): H∗, G[F1 \F2] and G[F2 \F1].

Therefore, F1 ∩F2 is a g-good-neighbor cut of G and hence |F2| = |F2 \F1|+ |F1 ∩F2| ≥

|V (H ′)|+κ(g)(G), which contradicts |F2| ≤ κ(g)(G)+ |V (H ′)|−2. Therefore, G is g-good-

neighbor (κ(g)(G)+ |V (H ′)|−2)-diagnosable and tg(G)≥ κ(g)(G)+ |V (H ′)|−2. The proof

is completed. 2

By Theorems 12.2.1 and 12.2.7, we have the following theorem.

Theorem 12.2.8 Let G be a g-good-neighbor connected graph, and let H be connected

subgraph of G with δ (H) = g such that it contains V (G) as least as possible, and N(V (H))

is a minimum g-good-neighbor cut of G, and let H ′ be connected subgraph of G with

δ (G) = g such that it contains V (G) as least as possible. If V (H∗) ̸= /0 for each distinct
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pair of g-good-neighbor faulty subsets F1 and F2 of G with |F1| ≤ κ(g)(G)+ |V (H ′)|−2 and

|F2| ≤ κ(g)(G)+ |V (H ′)|− 2, then κ(g)(G)+ |V (H ′)|− 2 ≤ tg(G) ≤ κ(g)(G)+ |V (H)|− 1

under the MM∗ model.

12.3 Conclusion

Conditional connectivity and conditional diagnosability are two important metrics for fault

tolerance of a multiprocessor system. In this chapter, we showed the relationship between

the g-good-neighbor (extra) diagnosability and g-good-neighbor (extra) connectivity of net-

works. It provided a simple way to study the g-good-neighbor (extra) diagnosability of some

well-known networks based on the g-good-neighbor (extra) connectivity. Furthermore, clari-

fying the relationship between these two metrics could help us determine other conditional

diagnosability of networks.



Chapter 13

Conclusion

13.1 Contributions of the Thesis

In Chapter 4, we showed that if G is a λ (4)-connected graph with λ (4)(G)≤ ξ4(G) and the

girth g(G) ≥ 8, and there are not six vertices u1, u2, u3, v1, v2 and v3 in G such that the

distance d(ui,v j)≥ 3 (1 ≤ i, j ≤ 3), then G is maximally 4-restricted edge-connected.

In Chapter 5, we proved that the nature diagnosability of CΓn under the PMC model and

MM∗ model is 2n− 3 except that, the bubble-sort graph B4, where n ≥ 4, and the nature

diagnosability of B4 under the MM∗ model is 4.

In Chapter 6, we showed that the 2-good-neighbor diagnosability of CΓn under the PMC

model and MM∗ model is g(n−2)−1, where n ≥ 4 and g is the girth of CΓn.

In Chapter 7, we showed that the connectivity of CKn is n(n−1)
2 , the nature neighbor

connectivity of CKn is n2 −n−2 and the nature diagnosability of CKn under the PMC model

is n2 −n−1 for n ≥ 4 and under the MM∗ model is n2 −n−1 for n ≥ 5.

In Chapter 8, we proved that the nature diagnosability of BSn is 4n−7 under the PMC

model for n ≥ 4, the nature diagnosability of BSn is 4n−7 under the MM∗ model for n ≥ 5.

In Chapter 9, we proved that (1) the connectivity of XQk
n is 4n; (2) the nature connectivity

of XQk
n is 8n− 4; (3) the nature diagnosability of XQk

n under the PMC model and MM∗

model is 8n−3 for n ≥ 2.
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In Chapter 10, we showed that LT Qn is tightly (4n−9) super 3-extra connected for n ≥ 6

and the 3-extra diagnosability of LT Qn under the PMC model and MM∗ model is 4n−6 for

n ≥ 5 and n ≥ 7, respectively.

In Chapter 11, we proved that diagnosability of Cay(Tn,Sn) is n−1 under the comparison

diagnosis model for n ≥ 4.

In Chapter 12, we showed the relationship between the g-good-neighbor (extra) diagnos-

ability and g-good-neighbor (extra) connectivity of graphs.

In the thesis, I used some recently proposed, practical oriented measurements such

as g-good connectivity, g-extra connectivity, g-good-neighbour diagnosability and g-extra

diagnosability. These new parameters better measure the robustness of networks, which is

also considered as reliability of networks in this thesis.

On the other hand, combining with using the networks of the following advantageous

topological properties, Cayley graph is highly symmetric, has well defined hierarchical

structure, highly connected and with great fault tolerance.

We had the corresponding results both on the characterization of network structure and

the measurement of reliability of networks as we showed above.

13.2 Future Work

13.2.1 g-Good-Neighbor Connectivity & g-Extra Connectivity

We have been working on the g-good-neighbor and g-extra connectivities and diagnosabilities

on several poplar structures (graphs) with g is one or two. It is natural to look at larger value

for g, to see if we could have obtain results using the similar methods we have employed.

We intend to generalize our methods to handle larger value for g. Furthermore, our research

so far are focused on Cayley graphs or related graphs due to their well described structure

and nice properties such as highly symmetric and well-structured cut sets. We are interested

in looking at other graphs, for example Kautz and De Bruijn graph. More specifically, we are

working on the following problems:
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• The 2-good-neighbor (3-good-neighbor) connectivity & diagnosability of Bubble-sort

star graphs;

• The 2-extra-neighbor(3-extra-neighbor) connectivity and & diagnosability of Bubble-

sort star graphs;

• The 2-good-neighbor (3-good-neighbor) connectivity & diagnosability of Cayley

graphs generated by complete graphs;

• The 2-extra-neighbor(3-extra-neighbor) connectivity & diagnosability of Cayley graphs

generated by complete graphs;

• The 2-good-neighbor (3-good-neighbor) connectivity & diagnosability of expanded

k-ary n-cubes;

• The 2-extra-neighbor(3-extra-neighbor) connectivity & diagnosability of expanded

k-ary n-cubes;

• The g-good-neighbor (g-good-neighbor) connectivity and diagnosability of more gen-

eralized k-ary n-cubes;

• The g-extra-neighbor(g-extra-neighbor) connectivity and diagnosability of more gener-

alized k-ary n-cubes;

and we will work on the following problems (related to general graphs):

• Sufficient conditions for graphs to be maximally n-restricted edge-Connected, where

n ≥ 5;

• Sufficient conditions for graphs to be tightly n super-g-extra-connected, where n ≥ 5.

13.2.2 Measurements of Connectedness in Graphs

In the Chapter 2, we have listed several types of connectivities or connectivity-related

parameters, such as restricted connectivity, super connectivity etc. The aim of introducing all
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these parameters are for better measuring of the reliability of the networks. One of the key

consideration is to get around of the so called trivial case, i.e. the cut set isolates a single

vertex. Throughout the introduction of all these parameters, the attempt is certainly clear. It

is natural to ask if we could introduce a better measurement along the same direction. For

example, we could consider the density of the graph, finding dense component means that

we have found the weak link, i.e. the connectivity of the graph. In this case, we will not be

worried about the trivial cases.

On the other hand, since the connnectedness of graphs is merely one parameter to

characterize the fault-tolerance of the network. It is also an interesting problem to find other

parameters to characterize how much a graph is fault-tolerant. This might come from the real

world applications.

Furthermore, so far, in this thesis, we have only studied the static graphs, i.e. the graph

with given structure which will not change over the time. However, in the real world

application, most cases we see dynamic networks, i.e. the graph whose structure changes

over the time. There are not many studied on the connectedness of such dynamic network. It

is our intention to extending our work into dynamic networks.

13.2.3 Other Works

During my PhD study, there are three papers which are focused on the existence of perfect

matching and factorization of regular graphs.

• "The maximum forcing number of a polyomino" is published in The Australasian

Journal of Combinatorics;

• "Existence of regular factor in dense graph" with cooperation of Prof. Yuqing Lin and

Prof. Hongliang Lu is submitted;

• "The factorization of regular graph" is in preparation.

However, since this thesis is mostly focused on the connectivities of graphs, thus I have

decided not to include these results in this thesis.
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